...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
The transform iterator adapts an iterator by modifying the operator*
to apply a function object to the result of dereferencing the iterator and
returning the result.
This is a simple example of using the transform_iterators class to generate iterators that multiply (or add to) the value returned by dereferencing the iterator. It would be cooler to use lambda library in this example.
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 }; const int N = sizeof(x)/sizeof(int); typedef boost::binder1st< std::multiplies<int> > Function; typedef boost::transform_iterator<Function, int*> doubling_iterator; doubling_iterator i(x, boost::bind1st(std::multiplies<int>(), 2)), i_end(x + N, boost::bind1st(std::multiplies<int>(), 2)); std::cout << "multiplying the array by 2:" << std::endl; while (i != i_end) std::cout << *i++ << " "; std::cout << std::endl; std::cout << "adding 4 to each element in the array:" << std::endl; std::copy(boost::make_transform_iterator(x, boost::bind1st(std::plus<int>(), 4)), boost::make_transform_iterator(x + N, boost::bind1st(std::plus<int>(), 4)), std::ostream_iterator<int>(std::cout, " ")); std::cout << std::endl;
The output is:
multiplying the array by 2: 2 4 6 8 10 12 14 16 adding 4 to each element in the array: 5 6 7 8 9 10 11 12
The source code for this example can be found here.
template <class UnaryFunction, class Iterator, class Reference = use_default, class Value = use_default> class transform_iterator { public: typedef /* see below */ value_type; typedef /* see below */ reference; typedef /* see below */ pointer; typedef iterator_traits<Iterator>::difference_type difference_type; typedef /* see below */ iterator_category; transform_iterator(); transform_iterator(Iterator const& x, UnaryFunction f); template<class F2, class I2, class R2, class V2> transform_iterator( transform_iterator<F2, I2, R2, V2> const& t , typename enable_if_convertible<I2, Iterator>::type* = 0 // exposition only , typename enable_if_convertible<F2, UnaryFunction>::type* = 0 // exposition only ); UnaryFunction functor() const; Iterator const& base() const; reference operator*() const; transform_iterator& operator++(); transform_iterator& operator--(); private: Iterator m_iterator; // exposition only UnaryFunction m_f; // exposition only };
If Reference
is use_default
then the reference
member of transform_iterator
is
result_of<const UnaryFunction(iterator_traits<Iterator>::reference)>::type
.
Otherwise, reference
is
Reference
.
If Value
is use_default
then the value_type
member is remove_cv<remove_reference<reference>
>::type
.
Otherwise, value_type
is
Value
.
If Iterator
models Readable
Lvalue Iterator and if Iterator
models Random Access Traversal Iterator, then iterator_category
is convertible to random_access_iterator_tag
.
Otherwise, if Iterator
models
Bidirectional Traversal Iterator, then iterator_category
is convertible to bidirectional_iterator_tag
.
Otherwise iterator_category
is convertible to forward_iterator_tag
.
If Iterator
does not model
Readable Lvalue Iterator then iterator_category
is convertible to input_iterator_tag
.
The type UnaryFunction
must
be Assignable, Copy Constructible, and the expression f(*i)
must be valid where f
is
a const object of type UnaryFunction
,
i
is an object of type Iterator
, and where the type of f(*i)
must be result_of<const UnaryFunction(iterator_traits<Iterator>::reference)>::type
.
The argument Iterator
shall
model Readable Iterator.
The resulting transform_iterator
models the most refined of the following that is also modeled by Iterator
.
transform_iterator::reference
is a non-const reference.
transform_iterator::reference
is a const reference.
The transform_iterator
models
the most refined standard traversal concept that is modeled by the Iterator
argument.
If transform_iterator
is
a model of Readable Lvalue Iterator then it models the following original
iterator concepts depending on what the Iterator
argument models.
Table 1.17. Category
If |
then |
---|---|
Single Pass Iterator |
Input Iterator |
Forward Traversal Iterator |
Forward Iterator |
Bidirectional Traversal Iterator |
Bidirectional Iterator |
Random Access Traversal Iterator |
Random Access Iterator |
If transform_iterator
models
Writable Lvalue Iterator then it is a mutable iterator (as defined in the
old iterator requirements).
transform_iterator<F1, X, R1,
V1>
is interoperable with transform_iterator<F2, Y,
R2, V2>
if and only if X
is interoperable
with Y
.
In addition to the operations required by the concepts
modeled by transform_iterator
,
transform_iterator
provides
the following operations:
transform_iterator();
Returns: An instance of transform_iterator
with m_f
and m_iterator
default constructed.
transform_iterator(Iterator const& x, UnaryFunction f);
Returns: An instance of transform_iterator
with m_f
initialized to
f
and m_iterator
initialized to x
.
template<class F2, class I2, class R2, class V2> transform_iterator( transform_iterator<F2, I2, R2, V2> const& t , typename enable_if_convertible<I2, Iterator>::type* = 0 // exposition only , typename enable_if_convertible<F2, UnaryFunction>::type* = 0 // exposition only );
Returns: An instance of transform_iterator
with m_f
initialized to
t.functor()
and m_iterator
initialized
to t.base()
.
Requires: OtherIterator
is implicitly convertible to Iterator
.
UnaryFunction functor() const;
Returns: m_f
Iterator const& base() const;
Returns: m_iterator
reference operator*() const;
Returns: m_f(*m_iterator)
transform_iterator& operator++();
Effects: ++m_iterator
Returns:
*this
transform_iterator& operator--();
Effects: --m_iterator
Returns:
*this