boost/date_time/time_resolution_traits.hpp
#ifndef DATE_TIME_TIME_RESOLUTION_TRAITS_HPP
#define DATE_TIME_TIME_RESOLUTION_TRAITS_HPP
/* Copyright (c) 2002,2003 CrystalClear Software, Inc.
* Use, modification and distribution is subject to the
* Boost Software License, Version 1.0. (See accompanying
* file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt)
* Author: Jeff Garland, Bart Garst
* $Date$
*/
#include <ctime>
#include <boost/cstdint.hpp>
#include <boost/date_time/time_defs.hpp>
#include <boost/date_time/int_adapter.hpp>
#include <boost/date_time/compiler_config.hpp>
namespace boost {
namespace date_time {
//! Simple function to calculate absolute value of a numeric type
template <typename T>
// JDG [7/6/02 made a template],
// moved here from time_duration.hpp 2003-Sept-4.
inline BOOST_CXX14_CONSTEXPR T absolute_value(T x)
{
return x < 0 ? -x : x;
}
//! traits struct for time_resolution_traits implementation type
struct time_resolution_traits_bi32_impl {
typedef boost::int32_t int_type;
typedef boost::int32_t impl_type;
static BOOST_CXX14_CONSTEXPR int_type as_number(impl_type i){ return i;}
//! Used to determine if implemented type is int_adapter or int
static BOOST_CXX14_CONSTEXPR bool is_adapted() { return false;}
};
//! traits struct for time_resolution_traits implementation type
struct time_resolution_traits_adapted32_impl {
typedef boost::int32_t int_type;
typedef boost::date_time::int_adapter<boost::int32_t> impl_type;
static BOOST_CXX14_CONSTEXPR int_type as_number(impl_type i){ return i.as_number();}
//! Used to determine if implemented type is int_adapter or int
static BOOST_CXX14_CONSTEXPR bool is_adapted() { return true;}
};
//! traits struct for time_resolution_traits implementation type
struct time_resolution_traits_bi64_impl {
typedef boost::int64_t int_type;
typedef boost::int64_t impl_type;
static BOOST_CXX14_CONSTEXPR int_type as_number(impl_type i){ return i;}
//! Used to determine if implemented type is int_adapter or int
static BOOST_CXX14_CONSTEXPR bool is_adapted() { return false;}
};
//! traits struct for time_resolution_traits implementation type
struct time_resolution_traits_adapted64_impl {
typedef boost::int64_t int_type;
typedef boost::date_time::int_adapter<boost::int64_t> impl_type;
static BOOST_CXX14_CONSTEXPR int_type as_number(impl_type i){ return i.as_number();}
//! Used to determine if implemented type is int_adapter or int
static BOOST_CXX14_CONSTEXPR bool is_adapted() { return true;}
};
//
// Note about var_type, which is used to define the variable that
// stores hours, minutes, and seconds values:
//
// In Boost 1.65.1 and earlier var_type was boost::int32_t which suffers
// the year 2038 problem. Binary serialization of posix_time uses
// 32-bit values, and uses serialization version 0.
//
// In Boost 1.66.0 the var_type changed to std::time_t, however
// binary serialization was not properly versioned, so on platforms
// where std::time_t is 32-bits, it remains compatible, however on
// platforms where std::time_t is 64-bits, binary serialization ingest
// will be incompatible with previous versions. Furthermore, binary
// serialized output from 1.66.0 will not be compatible with future
// versions. Yes, it's a mess. Static assertions were not present
// in the serialization code to protect against this possibility.
//
// In Boost 1.67.0 the var_type was changed to boost::int64_t,
// ensuring the output size is 64 bits, and the serialization version
// was bumped. Static assertions were added as well, protecting
// future changes in this area.
//
template<typename frac_sec_type,
time_resolutions res,
#if (defined(BOOST_MSVC) && (_MSC_VER < 1300))
boost::int64_t resolution_adjust,
#else
typename frac_sec_type::int_type resolution_adjust,
#endif
unsigned short frac_digits,
typename var_type = boost::int64_t > // see note above
class time_resolution_traits {
public:
typedef typename frac_sec_type::int_type fractional_seconds_type;
typedef typename frac_sec_type::int_type tick_type;
typedef typename frac_sec_type::impl_type impl_type;
typedef var_type day_type;
typedef var_type hour_type;
typedef var_type min_type;
typedef var_type sec_type;
// bring in function from frac_sec_type traits structs
static BOOST_CXX14_CONSTEXPR fractional_seconds_type as_number(impl_type i)
{
return frac_sec_type::as_number(i);
}
static BOOST_CXX14_CONSTEXPR bool is_adapted()
{
return frac_sec_type::is_adapted();
}
//Would like this to be frac_sec_type, but some compilers complain
#if (defined(BOOST_MSVC) && (_MSC_VER < 1300))
BOOST_STATIC_CONSTANT(boost::int64_t, ticks_per_second = resolution_adjust);
#else
BOOST_STATIC_CONSTANT(fractional_seconds_type, ticks_per_second = resolution_adjust);
#endif
static BOOST_CXX14_CONSTEXPR time_resolutions resolution()
{
return res;
}
static BOOST_CXX14_CONSTEXPR unsigned short num_fractional_digits()
{
return frac_digits;
}
static BOOST_CXX14_CONSTEXPR fractional_seconds_type res_adjust()
{
return resolution_adjust;
}
//! Any negative argument results in a negative tick_count
static BOOST_CXX14_CONSTEXPR tick_type to_tick_count(hour_type hours,
min_type minutes,
sec_type seconds,
fractional_seconds_type fs)
{
if(hours < 0 || minutes < 0 || seconds < 0 || fs < 0)
{
hours = absolute_value(hours);
minutes = absolute_value(minutes);
seconds = absolute_value(seconds);
fs = absolute_value(fs);
return static_cast<tick_type>(((((fractional_seconds_type(hours)*3600)
+ (fractional_seconds_type(minutes)*60)
+ seconds)*res_adjust()) + fs) * -1);
}
return static_cast<tick_type>((((fractional_seconds_type(hours)*3600)
+ (fractional_seconds_type(minutes)*60)
+ seconds)*res_adjust()) + fs);
}
};
typedef time_resolution_traits<time_resolution_traits_adapted32_impl, milli, 1000, 3 > milli_res;
typedef time_resolution_traits<time_resolution_traits_adapted64_impl, micro, 1000000, 6 > micro_res;
typedef time_resolution_traits<time_resolution_traits_adapted64_impl, nano, 1000000000, 9 > nano_res;
} } //namespace date_time
#endif