boost/move/algo/adaptive_merge.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2015-2016.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_MOVE_ADAPTIVE_MERGE_HPP
#define BOOST_MOVE_ADAPTIVE_MERGE_HPP
#include <boost/move/detail/config_begin.hpp>
#include <boost/move/algo/detail/adaptive_sort_merge.hpp>
namespace boost {
namespace movelib {
///@cond
namespace detail_adaptive {
template<class RandIt, class Compare, class XBuf>
inline void adaptive_merge_combine_blocks( RandIt first
, typename iterator_traits<RandIt>::size_type len1
, typename iterator_traits<RandIt>::size_type len2
, typename iterator_traits<RandIt>::size_type collected
, typename iterator_traits<RandIt>::size_type n_keys
, typename iterator_traits<RandIt>::size_type l_block
, bool use_internal_buf
, bool xbuf_used
, Compare comp
, XBuf & xbuf
)
{
typedef typename iterator_traits<RandIt>::size_type size_type;
size_type const len = len1+len2;
size_type const l_combine = len-collected;
size_type const l_combine1 = len1-collected;
if(n_keys){
RandIt const first_data = first+collected;
RandIt const keys = first;
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" A combine: ", len);
if(xbuf_used){
if(xbuf.size() < l_block){
xbuf.initialize_until(l_block, *first);
}
BOOST_ASSERT(xbuf.size() >= l_block);
size_type n_block_a, n_block_b, l_irreg1, l_irreg2;
combine_params( keys, comp, l_combine
, l_combine1, l_block, xbuf
, n_block_a, n_block_b, l_irreg1, l_irreg2); //Outputs
op_merge_blocks_with_buf
(keys, comp, first_data, l_block, l_irreg1, n_block_a, n_block_b, l_irreg2, comp, move_op(), xbuf.data());
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1(" A mrg xbf: ", len);
}
else{
size_type n_block_a, n_block_b, l_irreg1, l_irreg2;
combine_params( keys, comp, l_combine
, l_combine1, l_block, xbuf
, n_block_a, n_block_b, l_irreg1, l_irreg2); //Outputs
if(use_internal_buf){
op_merge_blocks_with_buf
(keys, comp, first_data, l_block, l_irreg1, n_block_a, n_block_b, l_irreg2, comp, swap_op(), first_data-l_block);
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" A mrg buf: ", len);
}
else{
merge_blocks_bufferless
(keys, comp, first_data, l_block, l_irreg1, n_block_a, n_block_b, l_irreg2, comp);
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1(" A mrg nbf: ", len);
}
}
}
else{
xbuf.shrink_to_fit(l_block);
if(xbuf.size() < l_block){
xbuf.initialize_until(l_block, *first);
}
size_type *const uint_keys = xbuf.template aligned_trailing<size_type>(l_block);
size_type n_block_a, n_block_b, l_irreg1, l_irreg2;
combine_params( uint_keys, less(), l_combine
, l_combine1, l_block, xbuf
, n_block_a, n_block_b, l_irreg1, l_irreg2, true); //Outputs
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" A combine: ", len);
BOOST_ASSERT(xbuf.size() >= l_block);
op_merge_blocks_with_buf
(uint_keys, less(), first, l_block, l_irreg1, n_block_a, n_block_b, l_irreg2, comp, move_op(), xbuf.data());
xbuf.clear();
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1(" A mrg buf: ", len);
}
}
template<class RandIt, class Compare, class XBuf>
inline void adaptive_merge_final_merge( RandIt first
, typename iterator_traits<RandIt>::size_type len1
, typename iterator_traits<RandIt>::size_type len2
, typename iterator_traits<RandIt>::size_type collected
, typename iterator_traits<RandIt>::size_type l_intbuf
, typename iterator_traits<RandIt>::size_type l_block
, bool use_internal_buf
, bool xbuf_used
, Compare comp
, XBuf & xbuf
)
{
typedef typename iterator_traits<RandIt>::size_type size_type;
(void)l_block;
(void)use_internal_buf;
size_type n_keys = collected-l_intbuf;
size_type len = len1+len2;
if (!xbuf_used || n_keys) {
xbuf.clear();
const size_type middle = xbuf_used && n_keys ? n_keys: collected;
unstable_sort(first, first + middle, comp, xbuf);
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L2(" A k/b srt: ", len);
stable_merge(first, first + middle, first + len, comp, xbuf);
}
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1(" A fin mrg: ", len);
}
template<class SizeType>
inline static SizeType adaptive_merge_n_keys_without_external_keys(SizeType l_block, SizeType len1, SizeType len2, SizeType l_intbuf)
{
typedef SizeType size_type;
//This is the minimum number of keys to implement the ideal algorithm
size_type n_keys = len1/l_block+len2/l_block;
const size_type second_half_blocks = len2/l_block;
const size_type first_half_aux = len1-l_intbuf;
while(n_keys >= ((first_half_aux-n_keys)/l_block + second_half_blocks)){
--n_keys;
}
++n_keys;
return n_keys;
}
template<class SizeType>
inline static SizeType adaptive_merge_n_keys_with_external_keys(SizeType l_block, SizeType len1, SizeType len2, SizeType l_intbuf)
{
typedef SizeType size_type;
//This is the minimum number of keys to implement the ideal algorithm
size_type n_keys = (len1-l_intbuf)/l_block + len2/l_block;
return n_keys;
}
template<class SizeType, class Xbuf>
inline SizeType adaptive_merge_n_keys_intbuf(SizeType &rl_block, SizeType len1, SizeType len2, Xbuf & xbuf, SizeType &l_intbuf_inout)
{
typedef SizeType size_type;
size_type l_block = rl_block;
size_type l_intbuf = xbuf.capacity() >= l_block ? 0u : l_block;
if (xbuf.capacity() > l_block){
l_block = xbuf.capacity();
}
//This is the minimum number of keys to implement the ideal algorithm
size_type n_keys = adaptive_merge_n_keys_without_external_keys(l_block, len1, len2, l_intbuf);
BOOST_ASSERT(n_keys >= ((len1-l_intbuf-n_keys)/l_block + len2/l_block));
if(xbuf.template supports_aligned_trailing<size_type>
( l_block
, adaptive_merge_n_keys_with_external_keys(l_block, len1, len2, l_intbuf)))
{
n_keys = 0u;
}
l_intbuf_inout = l_intbuf;
rl_block = l_block;
return n_keys;
}
// Main explanation of the merge algorithm.
//
// csqrtlen = ceil(sqrt(len));
//
// * First, csqrtlen [to be used as buffer] + (len/csqrtlen - 1) [to be used as keys] => to_collect
// unique elements are extracted from elements to be sorted and placed in the beginning of the range.
//
// * Step "combine_blocks": the leading (len1-to_collect) elements plus trailing len2 elements
// are merged with a non-trivial ("smart") algorithm to form an ordered range trailing "len-to_collect" elements.
//
// Explanation of the "combine_blocks" step:
//
// * Trailing [first+to_collect, first+len1) elements are divided in groups of cqrtlen elements.
// Remaining elements that can't form a group are grouped in front of those elements.
// * Trailing [first+len1, first+len1+len2) elements are divided in groups of cqrtlen elements.
// Remaining elements that can't form a group are grouped in the back of those elements.
// * In parallel the following two steps are performed:
// * Groups are selection-sorted by first or last element (depending whether they are going
// to be merged to left or right) and keys are reordered accordingly as an imitation-buffer.
// * Elements of each block pair are merged using the csqrtlen buffer taking into account
// if they belong to the first half or second half (marked by the key).
//
// * In the final merge step leading "to_collect" elements are merged with rotations
// with the rest of merged elements in the "combine_blocks" step.
//
// Corner cases:
//
// * If no "to_collect" elements can be extracted:
//
// * If more than a minimum number of elements is extracted
// then reduces the number of elements used as buffer and keys in the
// and "combine_blocks" steps. If "combine_blocks" has no enough keys due to this reduction
// then uses a rotation based smart merge.
//
// * If the minimum number of keys can't be extracted, a rotation-based merge is performed.
//
// * If auxiliary memory is more or equal than min(len1, len2), a buffered merge is performed.
//
// * If the len1 or len2 are less than 2*csqrtlen then a rotation-based merge is performed.
//
// * If auxiliary memory is more than csqrtlen+n_keys*sizeof(std::size_t),
// then no csqrtlen need to be extracted and "combine_blocks" will use integral
// keys to combine blocks.
template<class RandIt, class Compare, class XBuf>
void adaptive_merge_impl
( RandIt first
, typename iterator_traits<RandIt>::size_type len1
, typename iterator_traits<RandIt>::size_type len2
, Compare comp
, XBuf & xbuf
)
{
typedef typename iterator_traits<RandIt>::size_type size_type;
if(xbuf.capacity() >= min_value<size_type>(len1, len2)){
buffered_merge(first, first+len1, first+(len1+len2), comp, xbuf);
}
else{
const size_type len = len1+len2;
//Calculate ideal parameters and try to collect needed unique keys
size_type l_block = size_type(ceil_sqrt(len));
//One range is not big enough to extract keys and the internal buffer so a
//rotation-based based merge will do just fine
if(len1 <= l_block*2 || len2 <= l_block*2){
merge_bufferless(first, first+len1, first+len1+len2, comp);
return;
}
//Detail the number of keys and internal buffer. If xbuf has enough memory, no
//internal buffer is needed so l_intbuf will remain 0.
size_type l_intbuf = 0;
size_type n_keys = adaptive_merge_n_keys_intbuf(l_block, len1, len2, xbuf, l_intbuf);
size_type const to_collect = l_intbuf+n_keys;
//Try to extract needed unique values from the first range
size_type const collected = collect_unique(first, first+len1, to_collect, comp, xbuf);
BOOST_MOVE_ADAPTIVE_SORT_PRINT_L1("\n A collect: ", len);
//Not the minimum number of keys is not available on the first range, so fallback to rotations
if(collected != to_collect && collected < 4){
merge_bufferless(first, first+collected, first+len1, comp);
merge_bufferless(first, first + len1, first + len1 + len2, comp);
return;
}
//If not enough keys but more than minimum, adjust the internal buffer and key count
bool use_internal_buf = collected == to_collect;
if (!use_internal_buf){
l_intbuf = 0u;
n_keys = collected;
l_block = lblock_for_combine(l_intbuf, n_keys, len, use_internal_buf);
//If use_internal_buf is false, then then internal buffer will be zero and rotation-based combination will be used
l_intbuf = use_internal_buf ? l_block : 0u;
}
bool const xbuf_used = collected == to_collect && xbuf.capacity() >= l_block;
//Merge trailing elements using smart merges
adaptive_merge_combine_blocks(first, len1, len2, collected, n_keys, l_block, use_internal_buf, xbuf_used, comp, xbuf);
//Merge buffer and keys with the rest of the values
adaptive_merge_final_merge (first, len1, len2, collected, l_intbuf, l_block, use_internal_buf, xbuf_used, comp, xbuf);
}
}
} //namespace detail_adaptive {
///@endcond
//! <b>Effects</b>: Merges two consecutive sorted ranges [first, middle) and [middle, last)
//! into one sorted range [first, last) according to the given comparison function comp.
//! The algorithm is stable (if there are equivalent elements in the original two ranges,
//! the elements from the first range (preserving their original order) precede the elements
//! from the second range (preserving their original order).
//!
//! <b>Requires</b>:
//! - RandIt must meet the requirements of ValueSwappable and RandomAccessIterator.
//! - The type of dereferenced RandIt must meet the requirements of MoveAssignable and MoveConstructible.
//!
//! <b>Parameters</b>:
//! - first: the beginning of the first sorted range.
//! - middle: the end of the first sorted range and the beginning of the second
//! - last: the end of the second sorted range
//! - comp: comparison function object which returns true if the first argument is is ordered before the second.
//! - uninitialized, uninitialized_len: raw storage starting on "uninitialized", able to hold "uninitialized_len"
//! elements of type iterator_traits<RandIt>::value_type. Maximum performance is achieved when uninitialized_len
//! is min(std::distance(first, middle), std::distance(middle, last)).
//!
//! <b>Throws</b>: If comp throws or the move constructor, move assignment or swap of the type
//! of dereferenced RandIt throws.
//!
//! <b>Complexity</b>: Always K x O(N) comparisons and move assignments/constructors/swaps.
//! Constant factor for comparisons and data movement is minimized when uninitialized_len
//! is min(std::distance(first, middle), std::distance(middle, last)).
//! Pretty good enough performance is achieved when uninitialized_len is
//! ceil(sqrt(std::distance(first, last)))*2.
//!
//! <b>Caution</b>: Experimental implementation, not production-ready.
template<class RandIt, class Compare>
void adaptive_merge( RandIt first, RandIt middle, RandIt last, Compare comp
, typename iterator_traits<RandIt>::value_type* uninitialized = 0
, typename iterator_traits<RandIt>::size_type uninitialized_len = 0)
{
typedef typename iterator_traits<RandIt>::size_type size_type;
typedef typename iterator_traits<RandIt>::value_type value_type;
if (first == middle || middle == last){
return;
}
//Reduce ranges to merge if possible
do {
if (comp(*middle, *first)){
break;
}
++first;
if (first == middle)
return;
} while(1);
RandIt first_high(middle);
--first_high;
do {
--last;
if (comp(*last, *first_high)){
++last;
break;
}
if (last == middle)
return;
} while(1);
::boost::movelib::adaptive_xbuf<value_type, value_type*, size_type> xbuf(uninitialized, size_type(uninitialized_len));
::boost::movelib::detail_adaptive::adaptive_merge_impl(first, size_type(middle - first), size_type(last - middle), comp, xbuf);
}
} //namespace movelib {
} //namespace boost {
#include <boost/move/detail/config_end.hpp>
#endif //#define BOOST_MOVE_ADAPTIVE_MERGE_HPP