boost/graph/detail/d_ary_heap.hpp
//
//=======================================================================
// Copyright 2009 Trustees of Indiana University
// Authors: Jeremiah J. Willcock, Andrew Lumsdaine
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
//
#ifndef BOOST_D_ARY_HEAP_HPP
#define BOOST_D_ARY_HEAP_HPP
#include <vector>
#include <cstddef>
#include <algorithm>
#include <utility>
#include <boost/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/shared_array.hpp>
#include <boost/property_map/property_map.hpp>
// WARNING: it is not safe to copy a d_ary_heap_indirect and then modify one of
// the copies. The class is required to be copyable so it can be passed around
// (without move support from C++11), but it deep-copies the heap contents yet
// shallow-copies the index_in_heap_map.
namespace boost {
// Swap two elements in a property map without assuming they model
// LvaluePropertyMap -- currently not used
template <typename PropMap>
inline void property_map_swap(
PropMap prop_map,
const typename boost::property_traits<PropMap>::key_type& ka,
const typename boost::property_traits<PropMap>::key_type& kb) {
typename boost::property_traits<PropMap>::value_type va = get(prop_map, ka);
put(prop_map, ka, get(prop_map, kb));
put(prop_map, kb, va);
}
namespace detail {
template <typename Value>
class fixed_max_size_vector {
boost::shared_array<Value> m_data;
std::size_t m_size;
public:
typedef std::size_t size_type;
fixed_max_size_vector(std::size_t max_size)
: m_data(new Value[max_size]), m_size(0) {}
std::size_t size() const {return m_size;}
bool empty() const {return m_size == 0;}
Value& operator[](std::size_t i) {return m_data[i];}
const Value& operator[](std::size_t i) const {return m_data[i];}
void push_back(Value v) {m_data[m_size++] = v;}
void pop_back() {--m_size;}
Value& back() {return m_data[m_size - 1];}
const Value& back() const {return m_data[m_size - 1];}
};
}
// D-ary heap using an indirect compare operator (use identity_property_map
// as DistanceMap to get a direct compare operator). This heap appears to be
// commonly used for Dijkstra's algorithm for its good practical performance
// on some platforms; asymptotically, it has an O(lg N) decrease-key
// operation while that can be done in constant time on a relaxed heap. The
// implementation is mostly based on the binary heap page on Wikipedia and
// online sources that state that the operations are the same for d-ary
// heaps. This code is not based on the old Boost d-ary heap code.
//
// - d_ary_heap_indirect is a model of UpdatableQueue as is needed for
// dijkstra_shortest_paths.
//
// - Value must model Assignable.
// - Arity must be at least 2 (optimal value appears to be 4, both in my and
// third-party experiments).
// - IndexInHeapMap must be a ReadWritePropertyMap from Value to
// Container::size_type (to store the index of each stored value within the
// heap for decrease-key aka update).
// - DistanceMap must be a ReadablePropertyMap from Value to something
// (typedef'ed as distance_type).
// - Compare must be a BinaryPredicate used as a less-than operator on
// distance_type.
// - Container must be a random-access, contiguous container (in practice,
// the operations used probably require that it is std::vector<Value>).
//
template <typename Value,
std::size_t Arity,
typename IndexInHeapPropertyMap,
typename DistanceMap,
typename Compare = std::less<Value>,
typename Container = std::vector<Value> >
class d_ary_heap_indirect {
BOOST_STATIC_ASSERT (Arity >= 2);
public:
typedef typename Container::size_type size_type;
typedef Value value_type;
typedef typename boost::property_traits<DistanceMap>::value_type key_type;
typedef DistanceMap key_map;
d_ary_heap_indirect(DistanceMap distance,
IndexInHeapPropertyMap index_in_heap,
const Compare& compare = Compare(),
const Container& data = Container())
: compare(compare), data(data), distance(distance),
index_in_heap(index_in_heap) {}
/* Implicit copy constructor */
/* Implicit assignment operator */
size_type size() const {
return data.size();
}
bool empty() const {
return data.empty();
}
void push(const Value& v) {
size_type index = data.size();
data.push_back(v);
put(index_in_heap, v, index);
preserve_heap_property_up(index);
verify_heap();
}
Value& top() {
BOOST_ASSERT (!this->empty());
return data[0];
}
const Value& top() const {
BOOST_ASSERT (!this->empty());
return data[0];
}
void pop() {
BOOST_ASSERT (!this->empty());
put(index_in_heap, data[0], (size_type)(-1));
if (data.size() != 1) {
data[0] = data.back();
put(index_in_heap, data[0], (size_type)(0));
data.pop_back();
preserve_heap_property_down();
verify_heap();
} else {
data.pop_back();
}
}
// This function assumes the key has been updated (using an external write
// to the distance map or such)
// See http://coding.derkeiler.com/Archive/General/comp.theory/2007-05/msg00043.html
void update(const Value& v) { /* decrease-key */
size_type index = get(index_in_heap, v);
preserve_heap_property_up(index);
verify_heap();
}
bool contains(const Value& v) const {
size_type index = get(index_in_heap, v);
return (index != (size_type)(-1));
}
void push_or_update(const Value& v) { /* insert if not present, else update */
size_type index = get(index_in_heap, v);
if (index == (size_type)(-1)) {
index = data.size();
data.push_back(v);
put(index_in_heap, v, index);
}
preserve_heap_property_up(index);
verify_heap();
}
DistanceMap keys() const {
return distance;
}
private:
Compare compare;
Container data;
DistanceMap distance;
IndexInHeapPropertyMap index_in_heap;
// The distances being compared using compare and that are stored in the
// distance map
typedef typename boost::property_traits<DistanceMap>::value_type distance_type;
// Get the parent of a given node in the heap
static size_type parent(size_type index) {
return (index - 1) / Arity;
}
// Get the child_idx'th child of a given node; 0 <= child_idx < Arity
static size_type child(size_type index, std::size_t child_idx) {
return index * Arity + child_idx + 1;
}
// Swap two elements in the heap by index, updating index_in_heap
void swap_heap_elements(size_type index_a, size_type index_b) {
using std::swap;
Value value_a = data[index_a];
Value value_b = data[index_b];
data[index_a] = value_b;
data[index_b] = value_a;
put(index_in_heap, value_a, index_b);
put(index_in_heap, value_b, index_a);
}
// Emulate the indirect_cmp that is now folded into this heap class
bool compare_indirect(const Value& a, const Value& b) const {
return compare(get(distance, a), get(distance, b));
}
// Verify that the array forms a heap; commented out by default
void verify_heap() const {
// This is a very expensive test so it should be disabled even when
// NDEBUG is not defined
#if 0
for (size_t i = 1; i < data.size(); ++i) {
if (compare_indirect(data[i], data[parent(i)])) {
BOOST_ASSERT (!"Element is smaller than its parent");
}
}
#endif
}
// Starting at a node, move up the tree swapping elements to preserve the
// heap property
void preserve_heap_property_up(size_type index) {
size_type orig_index = index;
size_type num_levels_moved = 0;
// The first loop just saves swaps that need to be done in order to avoid
// aliasing issues in its search; there is a second loop that does the
// necessary swap operations
if (index == 0) return; // Do nothing on root
Value currently_being_moved = data[index];
distance_type currently_being_moved_dist =
get(distance, currently_being_moved);
for (;;) {
if (index == 0) break; // Stop at root
size_type parent_index = parent(index);
Value parent_value = data[parent_index];
if (compare(currently_being_moved_dist, get(distance, parent_value))) {
++num_levels_moved;
index = parent_index;
continue;
} else {
break; // Heap property satisfied
}
}
// Actually do the moves -- move num_levels_moved elements down in the
// tree, then put currently_being_moved at the top
index = orig_index;
for (size_type i = 0; i < num_levels_moved; ++i) {
size_type parent_index = parent(index);
Value parent_value = data[parent_index];
put(index_in_heap, parent_value, index);
data[index] = parent_value;
index = parent_index;
}
data[index] = currently_being_moved;
put(index_in_heap, currently_being_moved, index);
verify_heap();
}
// From the root, swap elements (each one with its smallest child) if there
// are any parent-child pairs that violate the heap property
void preserve_heap_property_down() {
if (data.empty()) return;
size_type index = 0;
Value currently_being_moved = data[0];
distance_type currently_being_moved_dist =
get(distance, currently_being_moved);
size_type heap_size = data.size();
Value* data_ptr = &data[0];
for (;;) {
size_type first_child_index = child(index, 0);
if (first_child_index >= heap_size) break; /* No children */
Value* child_base_ptr = data_ptr + first_child_index;
size_type smallest_child_index = 0;
distance_type smallest_child_dist = get(distance, child_base_ptr[smallest_child_index]);
if (first_child_index + Arity <= heap_size) {
// Special case for a statically known loop count (common case)
for (size_t i = 1; i < Arity; ++i) {
Value i_value = child_base_ptr[i];
distance_type i_dist = get(distance, i_value);
if (compare(i_dist, smallest_child_dist)) {
smallest_child_index = i;
smallest_child_dist = i_dist;
}
}
} else {
for (size_t i = 1; i < heap_size - first_child_index; ++i) {
distance_type i_dist = get(distance, child_base_ptr[i]);
if (compare(i_dist, smallest_child_dist)) {
smallest_child_index = i;
smallest_child_dist = i_dist;
}
}
}
if (compare(smallest_child_dist, currently_being_moved_dist)) {
swap_heap_elements(smallest_child_index + first_child_index, index);
index = smallest_child_index + first_child_index;
continue;
} else {
break; // Heap property satisfied
}
}
verify_heap();
}
};
} // namespace boost
#endif // BOOST_D_ARY_HEAP_HPP