boost/dynamic_bitset/dynamic_bitset.hpp
// -----------------------------------------------------------
//
// Copyright (c) 2001-2002 Chuck Allison and Jeremy Siek
// Copyright (c) 2003-2006, 2008 Gennaro Prota
// Copyright (c) 2014 Ahmed Charles
//
// Copyright (c) 2014 Glen Joseph Fernandes
// (glenjofe@gmail.com)
//
// Copyright (c) 2014 Riccardo Marcangelo
// Copyright (c) 2018 Evgeny Shulgin
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// -----------------------------------------------------------
#ifndef BOOST_DYNAMIC_BITSET_DYNAMIC_BITSET_HPP
#define BOOST_DYNAMIC_BITSET_DYNAMIC_BITSET_HPP
#include <assert.h>
#include <string>
#include <stdexcept>
#include <algorithm>
#include <vector>
#include <climits> // for CHAR_BIT
#include "boost/dynamic_bitset/config.hpp"
#ifndef BOOST_NO_STD_LOCALE
# include <locale>
#endif
#if defined(BOOST_OLD_IOSTREAMS)
# include <iostream.h>
# include <ctype.h> // for isspace
#else
# include <istream>
# include <ostream>
#endif
#include "boost/dynamic_bitset_fwd.hpp"
#include "boost/dynamic_bitset/detail/dynamic_bitset.hpp"
#include "boost/dynamic_bitset/detail/lowest_bit.hpp"
#include "boost/detail/iterator.hpp" // used to implement append(Iter, Iter)
#include "boost/move/move.hpp"
#include "boost/limits.hpp"
#include "boost/static_assert.hpp"
#include "boost/utility/addressof.hpp"
#include "boost/detail/no_exceptions_support.hpp"
#include "boost/throw_exception.hpp"
#include "boost/functional/hash/hash.hpp"
namespace boost {
template <typename Block, typename Allocator>
class dynamic_bitset
{
// Portability note: member function templates are defined inside
// this class definition to avoid problems with VC++. Similarly,
// with the member functions of nested classes.
//
// [October 2008: the note above is mostly historical; new versions
// of VC++ are likely able to digest a more drinking form of the
// code; but changing it now is probably not worth the risks...]
BOOST_STATIC_ASSERT((bool)detail::dynamic_bitset_impl::allowed_block_type<Block>::value);
typedef std::vector<Block, Allocator> buffer_type;
public:
typedef Block block_type;
typedef Allocator allocator_type;
typedef std::size_t size_type;
typedef typename buffer_type::size_type block_width_type;
BOOST_STATIC_CONSTANT(block_width_type, bits_per_block = (std::numeric_limits<Block>::digits));
BOOST_STATIC_CONSTANT(size_type, npos = static_cast<size_type>(-1));
public:
// A proxy class to simulate lvalues of bit type.
//
class reference
{
friend class dynamic_bitset<Block, Allocator>;
// the one and only non-copy ctor
reference(block_type & b, block_width_type pos)
:m_block(b),
m_mask( (assert(pos < bits_per_block),
block_type(1) << pos )
)
{ }
void operator&(); // left undefined
public:
// copy constructor: compiler generated
operator bool() const { return (m_block & m_mask) != 0; }
bool operator~() const { return (m_block & m_mask) == 0; }
reference& flip() { do_flip(); return *this; }
reference& operator=(bool x) { do_assign(x); return *this; } // for b[i] = x
reference& operator=(const reference& rhs) { do_assign(rhs); return *this; } // for b[i] = b[j]
reference& operator|=(bool x) { if (x) do_set(); return *this; }
reference& operator&=(bool x) { if (!x) do_reset(); return *this; }
reference& operator^=(bool x) { if (x) do_flip(); return *this; }
reference& operator-=(bool x) { if (x) do_reset(); return *this; }
private:
block_type & m_block;
const block_type m_mask;
void do_set() { m_block |= m_mask; }
void do_reset() { m_block &= ~m_mask; }
void do_flip() { m_block ^= m_mask; }
void do_assign(bool x) { x? do_set() : do_reset(); }
};
typedef bool const_reference;
// constructors, etc.
dynamic_bitset() : m_num_bits(0) {}
explicit
dynamic_bitset(const Allocator& alloc);
explicit
dynamic_bitset(size_type num_bits, unsigned long value = 0,
const Allocator& alloc = Allocator());
// WARNING: you should avoid using this constructor.
//
// A conversion from string is, in most cases, formatting,
// and should be performed by using operator>>.
//
// NOTE:
// Leave the parentheses around std::basic_string<CharT, Traits, Alloc>::npos.
// g++ 3.2 requires them and probably the standard will - see core issue 325
// NOTE 2:
// split into two constructors because of bugs in MSVC 6.0sp5 with STLport
template <typename CharT, typename Traits, typename Alloc>
dynamic_bitset(const std::basic_string<CharT, Traits, Alloc>& s,
typename std::basic_string<CharT, Traits, Alloc>::size_type pos,
typename std::basic_string<CharT, Traits, Alloc>::size_type n,
size_type num_bits = npos,
const Allocator& alloc = Allocator())
:m_bits(alloc),
m_num_bits(0)
{
init_from_string(s, pos, n, num_bits);
}
template <typename CharT, typename Traits, typename Alloc>
explicit
dynamic_bitset(const std::basic_string<CharT, Traits, Alloc>& s,
typename std::basic_string<CharT, Traits, Alloc>::size_type pos = 0)
:m_bits(Allocator()),
m_num_bits(0)
{
init_from_string(s, pos, (std::basic_string<CharT, Traits, Alloc>::npos),
npos);
}
// The first bit in *first is the least significant bit, and the
// last bit in the block just before *last is the most significant bit.
template <typename BlockInputIterator>
dynamic_bitset(BlockInputIterator first, BlockInputIterator last,
const Allocator& alloc = Allocator())
:m_bits(alloc),
m_num_bits(0)
{
using boost::detail::dynamic_bitset_impl::value_to_type;
using boost::detail::dynamic_bitset_impl::is_numeric;
const value_to_type<
is_numeric<BlockInputIterator>::value> selector;
dispatch_init(first, last, selector);
}
template <typename T>
void dispatch_init(T num_bits, unsigned long value,
detail::dynamic_bitset_impl::value_to_type<true>)
{
init_from_unsigned_long(static_cast<size_type>(num_bits), value);
}
template <typename T>
void dispatch_init(T first, T last,
detail::dynamic_bitset_impl::value_to_type<false>)
{
init_from_block_range(first, last);
}
template <typename BlockIter>
void init_from_block_range(BlockIter first, BlockIter last)
{
assert(m_bits.size() == 0);
m_bits.insert(m_bits.end(), first, last);
m_num_bits = m_bits.size() * bits_per_block;
}
// copy constructor
dynamic_bitset(const dynamic_bitset& b);
~dynamic_bitset();
void swap(dynamic_bitset& b);
dynamic_bitset& operator=(const dynamic_bitset& b);
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
dynamic_bitset(dynamic_bitset&& src);
dynamic_bitset& operator=(dynamic_bitset&& src);
#endif // BOOST_NO_CXX11_RVALUE_REFERENCES
allocator_type get_allocator() const;
// size changing operations
void resize(size_type num_bits, bool value = false);
void clear();
void push_back(bool bit);
void pop_back();
void append(Block block);
template <typename BlockInputIterator>
void m_append(BlockInputIterator first, BlockInputIterator last, std::input_iterator_tag)
{
std::vector<Block, Allocator> v(first, last);
m_append(v.begin(), v.end(), std::random_access_iterator_tag());
}
template <typename BlockInputIterator>
void m_append(BlockInputIterator first, BlockInputIterator last, std::forward_iterator_tag)
{
assert(first != last);
block_width_type r = count_extra_bits();
std::size_t d = boost::detail::distance(first, last);
m_bits.reserve(num_blocks() + d);
if (r == 0) {
for( ; first != last; ++first)
m_bits.push_back(*first); // could use vector<>::insert()
}
else {
m_highest_block() |= (*first << r);
do {
Block b = *first >> (bits_per_block - r);
++first;
m_bits.push_back(b | (first==last? 0 : *first << r));
} while (first != last);
}
m_num_bits += bits_per_block * d;
}
template <typename BlockInputIterator>
void append(BlockInputIterator first, BlockInputIterator last) // strong guarantee
{
if (first != last) {
typename detail::iterator_traits<BlockInputIterator>::iterator_category cat;
m_append(first, last, cat);
}
}
// bitset operations
dynamic_bitset& operator&=(const dynamic_bitset& b);
dynamic_bitset& operator|=(const dynamic_bitset& b);
dynamic_bitset& operator^=(const dynamic_bitset& b);
dynamic_bitset& operator-=(const dynamic_bitset& b);
dynamic_bitset& operator<<=(size_type n);
dynamic_bitset& operator>>=(size_type n);
dynamic_bitset operator<<(size_type n) const;
dynamic_bitset operator>>(size_type n) const;
// basic bit operations
dynamic_bitset& set(size_type n, size_type len, bool val /* = true */); // default would make it ambiguous
dynamic_bitset& set(size_type n, bool val = true);
dynamic_bitset& set();
dynamic_bitset& reset(size_type n, size_type len);
dynamic_bitset& reset(size_type n);
dynamic_bitset& reset();
dynamic_bitset& flip(size_type n, size_type len);
dynamic_bitset& flip(size_type n);
dynamic_bitset& flip();
bool test(size_type n) const;
bool test_set(size_type n, bool val = true);
bool all() const;
bool any() const;
bool none() const;
dynamic_bitset operator~() const;
size_type count() const BOOST_NOEXCEPT;
// subscript
reference operator[](size_type pos) {
return reference(m_bits[block_index(pos)], bit_index(pos));
}
bool operator[](size_type pos) const { return test(pos); }
unsigned long to_ulong() const;
size_type size() const BOOST_NOEXCEPT;
size_type num_blocks() const BOOST_NOEXCEPT;
size_type max_size() const BOOST_NOEXCEPT;
bool empty() const BOOST_NOEXCEPT;
size_type capacity() const BOOST_NOEXCEPT;
void reserve(size_type num_bits);
void shrink_to_fit();
bool is_subset_of(const dynamic_bitset& a) const;
bool is_proper_subset_of(const dynamic_bitset& a) const;
bool intersects(const dynamic_bitset & a) const;
// lookup
size_type find_first() const;
size_type find_next(size_type pos) const;
#if !defined BOOST_DYNAMIC_BITSET_DONT_USE_FRIENDS
// lexicographical comparison
template <typename B, typename A>
friend bool operator==(const dynamic_bitset<B, A>& a,
const dynamic_bitset<B, A>& b);
template <typename B, typename A>
friend bool operator<(const dynamic_bitset<B, A>& a,
const dynamic_bitset<B, A>& b);
template <typename B, typename A>
friend bool oplessthan(const dynamic_bitset<B, A>& a,
const dynamic_bitset<B, A>& b);
template <typename B, typename A, typename BlockOutputIterator>
friend void to_block_range(const dynamic_bitset<B, A>& b,
BlockOutputIterator result);
template <typename BlockIterator, typename B, typename A>
friend void from_block_range(BlockIterator first, BlockIterator last,
dynamic_bitset<B, A>& result);
template <typename CharT, typename Traits, typename B, typename A>
friend std::basic_istream<CharT, Traits>& operator>>(std::basic_istream<CharT, Traits>& is,
dynamic_bitset<B, A>& b);
template <typename B, typename A, typename stringT>
friend void to_string_helper(const dynamic_bitset<B, A> & b, stringT & s, bool dump_all);
template <typename B, typename A>
friend std::size_t hash_value(const dynamic_bitset<B, A>& a);
#endif
public:
// forward declaration for optional zero-copy serialization support
class serialize_impl;
friend class serialize_impl;
private:
BOOST_STATIC_CONSTANT(block_width_type, ulong_width = std::numeric_limits<unsigned long>::digits);
dynamic_bitset& range_operation(size_type pos, size_type len,
Block (*partial_block_operation)(Block, size_type, size_type),
Block (*full_block_operation)(Block));
void m_zero_unused_bits();
bool m_check_invariants() const;
size_type m_do_find_from(size_type first_block) const;
block_width_type count_extra_bits() const BOOST_NOEXCEPT { return bit_index(size()); }
static size_type block_index(size_type pos) BOOST_NOEXCEPT { return pos / bits_per_block; }
static block_width_type bit_index(size_type pos) BOOST_NOEXCEPT { return static_cast<block_width_type>(pos % bits_per_block); }
static Block bit_mask(size_type pos) BOOST_NOEXCEPT { return Block(1) << bit_index(pos); }
static Block bit_mask(size_type first, size_type last) BOOST_NOEXCEPT
{
Block res = (last == bits_per_block - 1)
? static_cast<Block>(~0)
: ((Block(1) << (last + 1)) - 1);
res ^= (Block(1) << first) - 1;
return res;
}
static Block set_block_bits(Block block, size_type first,
size_type last, bool val) BOOST_NOEXCEPT
{
if (val)
return block | bit_mask(first, last);
else
return block & static_cast<Block>(~bit_mask(first, last));
}
// Functions for operations on ranges
inline static Block set_block_partial(Block block, size_type first,
size_type last) BOOST_NOEXCEPT
{
return set_block_bits(block, first, last, true);
}
inline static Block set_block_full(Block) BOOST_NOEXCEPT
{
return static_cast<Block>(~0);
}
inline static Block reset_block_partial(Block block, size_type first,
size_type last) BOOST_NOEXCEPT
{
return set_block_bits(block, first, last, false);
}
inline static Block reset_block_full(Block) BOOST_NOEXCEPT
{
return 0;
}
inline static Block flip_block_partial(Block block, size_type first,
size_type last) BOOST_NOEXCEPT
{
return block ^ bit_mask(first, last);
}
inline static Block flip_block_full(Block block) BOOST_NOEXCEPT
{
return ~block;
}
template <typename CharT, typename Traits, typename Alloc>
void init_from_string(const std::basic_string<CharT, Traits, Alloc>& s,
typename std::basic_string<CharT, Traits, Alloc>::size_type pos,
typename std::basic_string<CharT, Traits, Alloc>::size_type n,
size_type num_bits)
{
assert(pos <= s.size());
typedef typename std::basic_string<CharT, Traits, Alloc> StrT;
typedef typename StrT::traits_type Tr;
const typename StrT::size_type rlen = (std::min)(n, s.size() - pos);
const size_type sz = ( num_bits != npos? num_bits : rlen);
m_bits.resize(calc_num_blocks(sz));
m_num_bits = sz;
BOOST_DYNAMIC_BITSET_CTYPE_FACET(CharT, fac, std::locale());
const CharT one = BOOST_DYNAMIC_BITSET_WIDEN_CHAR(fac, '1');
const size_type m = num_bits < rlen ? num_bits : rlen;
typename StrT::size_type i = 0;
for( ; i < m; ++i) {
const CharT c = s[(pos + m - 1) - i];
assert( Tr::eq(c, one)
|| Tr::eq(c, BOOST_DYNAMIC_BITSET_WIDEN_CHAR(fac, '0')) );
if (Tr::eq(c, one))
set(i);
}
}
void init_from_unsigned_long(size_type num_bits,
unsigned long value/*,
const Allocator& alloc*/)
{
assert(m_bits.size() == 0);
m_bits.resize(calc_num_blocks(num_bits));
m_num_bits = num_bits;
typedef unsigned long num_type;
typedef boost::detail::dynamic_bitset_impl
::shifter<num_type, bits_per_block, ulong_width> shifter;
//if (num_bits == 0)
// return;
// zero out all bits at pos >= num_bits, if any;
// note that: num_bits == 0 implies value == 0
if (num_bits < static_cast<size_type>(ulong_width)) {
const num_type mask = (num_type(1) << num_bits) - 1;
value &= mask;
}
typename buffer_type::iterator it = m_bits.begin();
for( ; value; shifter::left_shift(value), ++it) {
*it = static_cast<block_type>(value);
}
}
BOOST_DYNAMIC_BITSET_PRIVATE:
bool m_unchecked_test(size_type pos) const;
static size_type calc_num_blocks(size_type num_bits);
Block& m_highest_block();
const Block& m_highest_block() const;
buffer_type m_bits;
size_type m_num_bits;
class bit_appender;
friend class bit_appender;
class bit_appender {
// helper for stream >>
// Supplies to the lack of an efficient append at the less
// significant end: bits are actually appended "at left" but
// rearranged in the destructor. From the perspective of
// client code everything works *as if* dynamic_bitset<> had
// an append_at_right() function (eventually throwing the same
// exceptions as push_back) except that the function is in fact
// called bit_appender::do_append().
//
dynamic_bitset & bs;
size_type n;
Block mask;
Block * current;
// not implemented
bit_appender(const bit_appender &);
bit_appender & operator=(const bit_appender &);
public:
bit_appender(dynamic_bitset & r) : bs(r), n(0), mask(0), current(0) {}
~bit_appender() {
// reverse the order of blocks, shift
// if needed, and then resize
//
std::reverse(bs.m_bits.begin(), bs.m_bits.end());
const block_width_type offs = bit_index(n);
if (offs)
bs >>= (bits_per_block - offs);
bs.resize(n); // doesn't enlarge, so can't throw
assert(bs.m_check_invariants());
}
inline void do_append(bool value) {
if (mask == 0) {
bs.append(Block(0));
current = &bs.m_highest_block();
mask = Block(1) << (bits_per_block - 1);
}
if(value)
*current |= mask;
mask /= 2;
++n;
}
size_type get_count() const { return n; }
};
};
#if !defined BOOST_NO_INCLASS_MEMBER_INITIALIZATION
template <typename Block, typename Allocator>
const typename dynamic_bitset<Block, Allocator>::block_width_type
dynamic_bitset<Block, Allocator>::bits_per_block;
template <typename Block, typename Allocator>
const typename dynamic_bitset<Block, Allocator>::size_type
dynamic_bitset<Block, Allocator>::npos;
template <typename Block, typename Allocator>
const typename dynamic_bitset<Block, Allocator>::block_width_type
dynamic_bitset<Block, Allocator>::ulong_width;
#endif
// Global Functions:
// comparison
template <typename Block, typename Allocator>
bool operator!=(const dynamic_bitset<Block, Allocator>& a,
const dynamic_bitset<Block, Allocator>& b);
template <typename Block, typename Allocator>
bool operator<=(const dynamic_bitset<Block, Allocator>& a,
const dynamic_bitset<Block, Allocator>& b);
template <typename Block, typename Allocator>
bool operator>(const dynamic_bitset<Block, Allocator>& a,
const dynamic_bitset<Block, Allocator>& b);
template <typename Block, typename Allocator>
bool operator>=(const dynamic_bitset<Block, Allocator>& a,
const dynamic_bitset<Block, Allocator>& b);
// stream operators
#ifdef BOOST_OLD_IOSTREAMS
template <typename Block, typename Allocator>
std::ostream& operator<<(std::ostream& os,
const dynamic_bitset<Block, Allocator>& b);
template <typename Block, typename Allocator>
std::istream& operator>>(std::istream& is, dynamic_bitset<Block,Allocator>& b);
#else
template <typename CharT, typename Traits, typename Block, typename Allocator>
std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os,
const dynamic_bitset<Block, Allocator>& b);
template <typename CharT, typename Traits, typename Block, typename Allocator>
std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is,
dynamic_bitset<Block, Allocator>& b);
#endif
// bitset operations
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>
operator&(const dynamic_bitset<Block, Allocator>& b1,
const dynamic_bitset<Block, Allocator>& b2);
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>
operator|(const dynamic_bitset<Block, Allocator>& b1,
const dynamic_bitset<Block, Allocator>& b2);
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>
operator^(const dynamic_bitset<Block, Allocator>& b1,
const dynamic_bitset<Block, Allocator>& b2);
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>
operator-(const dynamic_bitset<Block, Allocator>& b1,
const dynamic_bitset<Block, Allocator>& b2);
// namespace scope swap
template<typename Block, typename Allocator>
void swap(dynamic_bitset<Block, Allocator>& b1,
dynamic_bitset<Block, Allocator>& b2);
template <typename Block, typename Allocator, typename stringT>
void
to_string(const dynamic_bitset<Block, Allocator>& b, stringT & s);
template <typename Block, typename Allocator, typename BlockOutputIterator>
void
to_block_range(const dynamic_bitset<Block, Allocator>& b,
BlockOutputIterator result);
template <typename BlockIterator, typename B, typename A>
inline void
from_block_range(BlockIterator first, BlockIterator last,
dynamic_bitset<B, A>& result)
{
// PRE: distance(first, last) <= numblocks()
std::copy (first, last, result.m_bits.begin());
}
//=============================================================================
// dynamic_bitset implementation
//-----------------------------------------------------------------------------
// constructors, etc.
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>::dynamic_bitset(const Allocator& alloc)
: m_bits(alloc), m_num_bits(0)
{
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>::
dynamic_bitset(size_type num_bits, unsigned long value, const Allocator& alloc)
: m_bits(alloc),
m_num_bits(0)
{
init_from_unsigned_long(num_bits, value);
}
// copy constructor
template <typename Block, typename Allocator>
inline dynamic_bitset<Block, Allocator>::
dynamic_bitset(const dynamic_bitset& b)
: m_bits(b.m_bits), m_num_bits(b.m_num_bits)
{
}
template <typename Block, typename Allocator>
inline dynamic_bitset<Block, Allocator>::
~dynamic_bitset()
{
assert(m_check_invariants());
}
template <typename Block, typename Allocator>
inline void dynamic_bitset<Block, Allocator>::
swap(dynamic_bitset<Block, Allocator>& b) // no throw
{
std::swap(m_bits, b.m_bits);
std::swap(m_num_bits, b.m_num_bits);
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>& dynamic_bitset<Block, Allocator>::
operator=(const dynamic_bitset<Block, Allocator>& b)
{
m_bits = b.m_bits;
m_num_bits = b.m_num_bits;
return *this;
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
template <typename Block, typename Allocator>
inline dynamic_bitset<Block, Allocator>::
dynamic_bitset(dynamic_bitset<Block, Allocator>&& b)
: m_bits(boost::move(b.m_bits)), m_num_bits(boost::move(b.m_num_bits))
{
// Required so that assert(m_check_invariants()); works.
assert((b.m_bits = buffer_type()).empty());
b.m_num_bits = 0;
}
template <typename Block, typename Allocator>
inline dynamic_bitset<Block, Allocator>& dynamic_bitset<Block, Allocator>::
operator=(dynamic_bitset<Block, Allocator>&& b)
{
if (boost::addressof(b) == this) { return *this; }
m_bits = boost::move(b.m_bits);
m_num_bits = boost::move(b.m_num_bits);
// Required so that assert(m_check_invariants()); works.
assert((b.m_bits = buffer_type()).empty());
b.m_num_bits = 0;
return *this;
}
#endif // BOOST_NO_CXX11_RVALUE_REFERENCES
template <typename Block, typename Allocator>
inline typename dynamic_bitset<Block, Allocator>::allocator_type
dynamic_bitset<Block, Allocator>::get_allocator() const
{
return m_bits.get_allocator();
}
//-----------------------------------------------------------------------------
// size changing operations
template <typename Block, typename Allocator>
void dynamic_bitset<Block, Allocator>::
resize(size_type num_bits, bool value) // strong guarantee
{
const size_type old_num_blocks = num_blocks();
const size_type required_blocks = calc_num_blocks(num_bits);
const block_type v = value? ~Block(0) : Block(0);
if (required_blocks != old_num_blocks) {
m_bits.resize(required_blocks, v); // s.g. (copy)
}
// At this point:
//
// - if the buffer was shrunk, we have nothing more to do,
// except a call to m_zero_unused_bits()
//
// - if it was enlarged, all the (used) bits in the new blocks have
// the correct value, but we have not yet touched those bits, if
// any, that were 'unused bits' before enlarging: if value == true,
// they must be set.
if (value && (num_bits > m_num_bits)) {
const block_width_type extra_bits = count_extra_bits();
if (extra_bits) {
assert(old_num_blocks >= 1 && old_num_blocks <= m_bits.size());
// Set them.
m_bits[old_num_blocks - 1] |= (v << extra_bits);
}
}
m_num_bits = num_bits;
m_zero_unused_bits();
}
template <typename Block, typename Allocator>
void dynamic_bitset<Block, Allocator>::
clear() // no throw
{
m_bits.clear();
m_num_bits = 0;
}
template <typename Block, typename Allocator>
void dynamic_bitset<Block, Allocator>::
push_back(bool bit)
{
const size_type sz = size();
resize(sz + 1);
set(sz, bit);
}
template <typename Block, typename Allocator>
void dynamic_bitset<Block, Allocator>::
pop_back()
{
const size_type old_num_blocks = num_blocks();
const size_type required_blocks = calc_num_blocks(m_num_bits - 1);
if (required_blocks != old_num_blocks) {
m_bits.pop_back();
}
--m_num_bits;
m_zero_unused_bits();
}
template <typename Block, typename Allocator>
void dynamic_bitset<Block, Allocator>::
append(Block value) // strong guarantee
{
const block_width_type r = count_extra_bits();
if (r == 0) {
// the buffer is empty, or all blocks are filled
m_bits.push_back(value);
}
else {
m_bits.push_back(value >> (bits_per_block - r));
m_bits[m_bits.size() - 2] |= (value << r); // m_bits.size() >= 2
}
m_num_bits += bits_per_block;
assert(m_check_invariants());
}
//-----------------------------------------------------------------------------
// bitset operations
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>&
dynamic_bitset<Block, Allocator>::operator&=(const dynamic_bitset& rhs)
{
assert(size() == rhs.size());
for (size_type i = 0; i < num_blocks(); ++i)
m_bits[i] &= rhs.m_bits[i];
return *this;
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>&
dynamic_bitset<Block, Allocator>::operator|=(const dynamic_bitset& rhs)
{
assert(size() == rhs.size());
for (size_type i = 0; i < num_blocks(); ++i)
m_bits[i] |= rhs.m_bits[i];
//m_zero_unused_bits();
return *this;
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>&
dynamic_bitset<Block, Allocator>::operator^=(const dynamic_bitset& rhs)
{
assert(size() == rhs.size());
for (size_type i = 0; i < this->num_blocks(); ++i)
m_bits[i] ^= rhs.m_bits[i];
//m_zero_unused_bits();
return *this;
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>&
dynamic_bitset<Block, Allocator>::operator-=(const dynamic_bitset& rhs)
{
assert(size() == rhs.size());
for (size_type i = 0; i < num_blocks(); ++i)
m_bits[i] &= ~rhs.m_bits[i];
//m_zero_unused_bits();
return *this;
}
//
// NOTE:
// Note that the 'if (r != 0)' is crucial to avoid undefined
// behavior when the left hand operand of >> isn't promoted to a
// wider type (because rs would be too large).
//
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>&
dynamic_bitset<Block, Allocator>::operator<<=(size_type n)
{
if (n >= m_num_bits)
return reset();
//else
if (n > 0) {
size_type const last = num_blocks() - 1; // num_blocks() is >= 1
size_type const div = n / bits_per_block; // div is <= last
block_width_type const r = bit_index(n);
block_type * const b = &m_bits[0];
if (r != 0) {
block_width_type const rs = bits_per_block - r;
for (size_type i = last-div; i>0; --i) {
b[i+div] = (b[i] << r) | (b[i-1] >> rs);
}
b[div] = b[0] << r;
}
else {
for (size_type i = last-div; i>0; --i) {
b[i+div] = b[i];
}
b[div] = b[0];
}
// zero out div blocks at the less significant end
std::fill_n(m_bits.begin(), div, static_cast<block_type>(0));
// zero out any 1 bit that flowed into the unused part
m_zero_unused_bits(); // thanks to Lester Gong
}
return *this;
}
//
// NOTE:
// see the comments to operator <<=
//
template <typename B, typename A>
dynamic_bitset<B, A> & dynamic_bitset<B, A>::operator>>=(size_type n) {
if (n >= m_num_bits) {
return reset();
}
//else
if (n>0) {
size_type const last = num_blocks() - 1; // num_blocks() is >= 1
size_type const div = n / bits_per_block; // div is <= last
block_width_type const r = bit_index(n);
block_type * const b = &m_bits[0];
if (r != 0) {
block_width_type const ls = bits_per_block - r;
for (size_type i = div; i < last; ++i) {
b[i-div] = (b[i] >> r) | (b[i+1] << ls);
}
// r bits go to zero
b[last-div] = b[last] >> r;
}
else {
for (size_type i = div; i <= last; ++i) {
b[i-div] = b[i];
}
// note the '<=': the last iteration 'absorbs'
// b[last-div] = b[last] >> 0;
}
// div blocks are zero filled at the most significant end
std::fill_n(m_bits.begin() + (num_blocks()-div), div, static_cast<block_type>(0));
}
return *this;
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>
dynamic_bitset<Block, Allocator>::operator<<(size_type n) const
{
dynamic_bitset r(*this);
return r <<= n;
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>
dynamic_bitset<Block, Allocator>::operator>>(size_type n) const
{
dynamic_bitset r(*this);
return r >>= n;
}
//-----------------------------------------------------------------------------
// basic bit operations
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>&
dynamic_bitset<Block, Allocator>::set(size_type pos,
size_type len, bool val)
{
if (val)
return range_operation(pos, len, set_block_partial, set_block_full);
else
return range_operation(pos, len, reset_block_partial, reset_block_full);
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>&
dynamic_bitset<Block, Allocator>::set(size_type pos, bool val)
{
assert(pos < m_num_bits);
if (val)
m_bits[block_index(pos)] |= bit_mask(pos);
else
reset(pos);
return *this;
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>&
dynamic_bitset<Block, Allocator>::set()
{
std::fill(m_bits.begin(), m_bits.end(), static_cast<Block>(~0));
m_zero_unused_bits();
return *this;
}
template <typename Block, typename Allocator>
inline dynamic_bitset<Block, Allocator>&
dynamic_bitset<Block, Allocator>::reset(size_type pos, size_type len)
{
return range_operation(pos, len, reset_block_partial, reset_block_full);
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>&
dynamic_bitset<Block, Allocator>::reset(size_type pos)
{
assert(pos < m_num_bits);
#if defined __MWERKS__ && BOOST_WORKAROUND(__MWERKS__, <= 0x3003) // 8.x
// CodeWarrior 8 generates incorrect code when the &=~ is compiled,
// use the |^ variation instead.. <grafik>
m_bits[block_index(pos)] |= bit_mask(pos);
m_bits[block_index(pos)] ^= bit_mask(pos);
#else
m_bits[block_index(pos)] &= ~bit_mask(pos);
#endif
return *this;
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>&
dynamic_bitset<Block, Allocator>::reset()
{
std::fill(m_bits.begin(), m_bits.end(), Block(0));
return *this;
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>&
dynamic_bitset<Block, Allocator>::flip(size_type pos, size_type len)
{
return range_operation(pos, len, flip_block_partial, flip_block_full);
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>&
dynamic_bitset<Block, Allocator>::flip(size_type pos)
{
assert(pos < m_num_bits);
m_bits[block_index(pos)] ^= bit_mask(pos);
return *this;
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>&
dynamic_bitset<Block, Allocator>::flip()
{
for (size_type i = 0; i < num_blocks(); ++i)
m_bits[i] = ~m_bits[i];
m_zero_unused_bits();
return *this;
}
template <typename Block, typename Allocator>
bool dynamic_bitset<Block, Allocator>::m_unchecked_test(size_type pos) const
{
return (m_bits[block_index(pos)] & bit_mask(pos)) != 0;
}
template <typename Block, typename Allocator>
bool dynamic_bitset<Block, Allocator>::test(size_type pos) const
{
assert(pos < m_num_bits);
return m_unchecked_test(pos);
}
template <typename Block, typename Allocator>
bool dynamic_bitset<Block, Allocator>::test_set(size_type pos, bool val)
{
bool const b = test(pos);
if (b != val) {
set(pos, val);
}
return b;
}
template <typename Block, typename Allocator>
bool dynamic_bitset<Block, Allocator>::all() const
{
if (empty()) {
return true;
}
const block_width_type extra_bits = count_extra_bits();
block_type const all_ones = static_cast<Block>(~0);
if (extra_bits == 0) {
for (size_type i = 0, e = num_blocks(); i < e; ++i) {
if (m_bits[i] != all_ones) {
return false;
}
}
} else {
for (size_type i = 0, e = num_blocks() - 1; i < e; ++i) {
if (m_bits[i] != all_ones) {
return false;
}
}
const block_type mask = (block_type(1) << extra_bits) - 1;
if (m_highest_block() != mask) {
return false;
}
}
return true;
}
template <typename Block, typename Allocator>
bool dynamic_bitset<Block, Allocator>::any() const
{
for (size_type i = 0; i < num_blocks(); ++i)
if (m_bits[i])
return true;
return false;
}
template <typename Block, typename Allocator>
inline bool dynamic_bitset<Block, Allocator>::none() const
{
return !any();
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>
dynamic_bitset<Block, Allocator>::operator~() const
{
dynamic_bitset b(*this);
b.flip();
return b;
}
template <typename Block, typename Allocator>
typename dynamic_bitset<Block, Allocator>::size_type
dynamic_bitset<Block, Allocator>::count() const BOOST_NOEXCEPT
{
using detail::dynamic_bitset_impl::table_width;
using detail::dynamic_bitset_impl::access_by_bytes;
using detail::dynamic_bitset_impl::access_by_blocks;
using detail::dynamic_bitset_impl::value_to_type;
#if BOOST_WORKAROUND(__GNUC__, == 4) && (__GNUC_MINOR__ == 3) && (__GNUC_PATCHLEVEL__ == 3)
// NOTE: Explicit qualification of "bits_per_block"
// breaks compilation on gcc 4.3.3
enum { no_padding = bits_per_block == CHAR_BIT * sizeof(Block) };
#else
// NOTE: Explicitly qualifying "bits_per_block" to workaround
// regressions of gcc 3.4.x
enum { no_padding =
dynamic_bitset<Block, Allocator>::bits_per_block
== CHAR_BIT * sizeof(Block) };
#endif
enum { enough_table_width = table_width >= CHAR_BIT };
#if ((defined(BOOST_MSVC) && (BOOST_MSVC >= 1600)) || (defined(__clang__) && defined(__c2__)) || (defined(BOOST_INTEL) && defined(_MSC_VER))) && (defined(_M_IX86) || defined(_M_X64))
// Windows popcount is effective starting from the unsigned short type
enum { uneffective_popcount = sizeof(Block) < sizeof(unsigned short) };
#elif defined(BOOST_GCC) || defined(__clang__) || (defined(BOOST_INTEL) && defined(__GNUC__))
// GCC popcount is effective starting from the unsigned int type
enum { uneffective_popcount = sizeof(Block) < sizeof(unsigned int) };
#else
enum { uneffective_popcount = true };
#endif
enum { mode = (no_padding && enough_table_width && uneffective_popcount)
? access_by_bytes
: access_by_blocks };
return do_count(m_bits.begin(), num_blocks(), Block(0),
static_cast<value_to_type<(bool)mode> *>(0));
}
//-----------------------------------------------------------------------------
// conversions
template <typename B, typename A, typename stringT>
void to_string_helper(const dynamic_bitset<B, A> & b, stringT & s,
bool dump_all)
{
typedef typename stringT::traits_type Tr;
typedef typename stringT::value_type Ch;
BOOST_DYNAMIC_BITSET_CTYPE_FACET(Ch, fac, std::locale());
const Ch zero = BOOST_DYNAMIC_BITSET_WIDEN_CHAR(fac, '0');
const Ch one = BOOST_DYNAMIC_BITSET_WIDEN_CHAR(fac, '1');
// Note that this function may access (when
// dump_all == true) bits beyond position size() - 1
typedef typename dynamic_bitset<B, A>::size_type size_type;
const size_type len = dump_all?
dynamic_bitset<B, A>::bits_per_block * b.num_blocks():
b.size();
s.assign (len, zero);
for (size_type i = 0; i < len; ++i) {
if (b.m_unchecked_test(i))
Tr::assign(s[len - 1 - i], one);
}
}
// A comment similar to the one about the constructor from
// basic_string can be done here. Thanks to James Kanze for
// making me (Gennaro) realize this important separation of
// concerns issue, as well as many things about i18n.
//
template <typename Block, typename Allocator, typename stringT>
inline void
to_string(const dynamic_bitset<Block, Allocator>& b, stringT& s)
{
to_string_helper(b, s, false);
}
// Differently from to_string this function dumps out
// every bit of the internal representation (may be
// useful for debugging purposes)
//
template <typename B, typename A, typename stringT>
inline void
dump_to_string(const dynamic_bitset<B, A>& b, stringT& s)
{
to_string_helper(b, s, true /* =dump_all*/);
}
template <typename Block, typename Allocator, typename BlockOutputIterator>
inline void
to_block_range(const dynamic_bitset<Block, Allocator>& b,
BlockOutputIterator result)
{
// note how this copies *all* bits, including the
// unused ones in the last block (which are zero)
std::copy(b.m_bits.begin(), b.m_bits.end(), result);
}
template <typename Block, typename Allocator>
unsigned long dynamic_bitset<Block, Allocator>::
to_ulong() const
{
if (m_num_bits == 0)
return 0; // convention
// Check for overflows. This may be a performance burden on very
// large bitsets but is required by the specification, sorry
if (find_next(ulong_width - 1) != npos)
BOOST_THROW_EXCEPTION(std::overflow_error("boost::dynamic_bitset::to_ulong overflow"));
// Ok, from now on we can be sure there's no "on" bit
// beyond the "allowed" positions
typedef unsigned long result_type;
const size_type maximum_size =
(std::min)(m_num_bits, static_cast<size_type>(ulong_width));
const size_type last_block = block_index( maximum_size - 1 );
assert((last_block * bits_per_block) < static_cast<size_type>(ulong_width));
result_type result = 0;
for (size_type i = 0; i <= last_block; ++i) {
const size_type offset = i * bits_per_block;
result |= (static_cast<result_type>(m_bits[i]) << offset);
}
return result;
}
template <typename Block, typename Allocator>
inline typename dynamic_bitset<Block, Allocator>::size_type
dynamic_bitset<Block, Allocator>::size() const BOOST_NOEXCEPT
{
return m_num_bits;
}
template <typename Block, typename Allocator>
inline typename dynamic_bitset<Block, Allocator>::size_type
dynamic_bitset<Block, Allocator>::num_blocks() const BOOST_NOEXCEPT
{
return m_bits.size();
}
template <typename Block, typename Allocator>
inline typename dynamic_bitset<Block, Allocator>::size_type
dynamic_bitset<Block, Allocator>::max_size() const BOOST_NOEXCEPT
{
// Semantics of vector<>::max_size() aren't very clear
// (see lib issue 197) and many library implementations
// simply return dummy values, _unrelated_ to the underlying
// allocator.
//
// Given these problems, I was tempted to not provide this
// function at all but the user could need it if he provides
// his own allocator.
//
const size_type m = detail::dynamic_bitset_impl::
vector_max_size_workaround(m_bits);
return m <= (size_type(-1)/bits_per_block) ?
m * bits_per_block :
size_type(-1);
}
template <typename Block, typename Allocator>
inline bool dynamic_bitset<Block, Allocator>::empty() const BOOST_NOEXCEPT
{
return size() == 0;
}
template <typename Block, typename Allocator>
inline typename dynamic_bitset<Block, Allocator>::size_type
dynamic_bitset<Block, Allocator>::capacity() const BOOST_NOEXCEPT
{
return m_bits.capacity() * bits_per_block;
}
template <typename Block, typename Allocator>
inline void dynamic_bitset<Block, Allocator>::reserve(size_type num_bits)
{
m_bits.reserve(calc_num_blocks(num_bits));
}
template <typename Block, typename Allocator>
void dynamic_bitset<Block, Allocator>::shrink_to_fit()
{
if (m_bits.size() < m_bits.capacity()) {
buffer_type(m_bits).swap(m_bits);
}
}
template <typename Block, typename Allocator>
bool dynamic_bitset<Block, Allocator>::
is_subset_of(const dynamic_bitset<Block, Allocator>& a) const
{
assert(size() == a.size());
for (size_type i = 0; i < num_blocks(); ++i)
if (m_bits[i] & ~a.m_bits[i])
return false;
return true;
}
template <typename Block, typename Allocator>
bool dynamic_bitset<Block, Allocator>::
is_proper_subset_of(const dynamic_bitset<Block, Allocator>& a) const
{
assert(size() == a.size());
assert(num_blocks() == a.num_blocks());
bool proper = false;
for (size_type i = 0; i < num_blocks(); ++i) {
const Block & bt = m_bits[i];
const Block & ba = a.m_bits[i];
if (bt & ~ba)
return false; // not a subset at all
if (ba & ~bt)
proper = true;
}
return proper;
}
template <typename Block, typename Allocator>
bool dynamic_bitset<Block, Allocator>::intersects(const dynamic_bitset & b) const
{
size_type common_blocks = num_blocks() < b.num_blocks()
? num_blocks() : b.num_blocks();
for(size_type i = 0; i < common_blocks; ++i) {
if(m_bits[i] & b.m_bits[i])
return true;
}
return false;
}
// --------------------------------
// lookup
// look for the first bit "on", starting
// from the block with index first_block
//
template <typename Block, typename Allocator>
typename dynamic_bitset<Block, Allocator>::size_type
dynamic_bitset<Block, Allocator>::m_do_find_from(size_type first_block) const
{
size_type i = first_block;
// skip null blocks
while (i < num_blocks() && m_bits[i] == 0)
++i;
if (i >= num_blocks())
return npos; // not found
return i * bits_per_block + static_cast<size_type>(detail::lowest_bit(m_bits[i]));
}
template <typename Block, typename Allocator>
typename dynamic_bitset<Block, Allocator>::size_type
dynamic_bitset<Block, Allocator>::find_first() const
{
return m_do_find_from(0);
}
template <typename Block, typename Allocator>
typename dynamic_bitset<Block, Allocator>::size_type
dynamic_bitset<Block, Allocator>::find_next(size_type pos) const
{
const size_type sz = size();
if (pos >= (sz-1) || sz == 0)
return npos;
++pos;
const size_type blk = block_index(pos);
const block_width_type ind = bit_index(pos);
// shift bits upto one immediately after current
const Block fore = m_bits[blk] >> ind;
return fore?
pos + static_cast<size_type>(detail::lowest_bit(fore))
:
m_do_find_from(blk + 1);
}
//-----------------------------------------------------------------------------
// comparison
template <typename Block, typename Allocator>
bool operator==(const dynamic_bitset<Block, Allocator>& a,
const dynamic_bitset<Block, Allocator>& b)
{
return (a.m_num_bits == b.m_num_bits)
&& (a.m_bits == b.m_bits);
}
template <typename Block, typename Allocator>
inline bool operator!=(const dynamic_bitset<Block, Allocator>& a,
const dynamic_bitset<Block, Allocator>& b)
{
return !(a == b);
}
template <typename Block, typename Allocator>
bool operator<(const dynamic_bitset<Block, Allocator>& a,
const dynamic_bitset<Block, Allocator>& b)
{
// assert(a.size() == b.size());
typedef BOOST_DEDUCED_TYPENAME dynamic_bitset<Block, Allocator>::size_type size_type;
size_type asize(a.size());
size_type bsize(b.size());
if (!bsize)
{
return false;
}
else if (!asize)
{
return true;
}
else if (asize == bsize)
{
for (size_type ii = a.num_blocks(); ii > 0; --ii)
{
size_type i = ii-1;
if (a.m_bits[i] < b.m_bits[i])
return true;
else if (a.m_bits[i] > b.m_bits[i])
return false;
}
return false;
}
else
{
size_type leqsize(std::min BOOST_PREVENT_MACRO_SUBSTITUTION(asize,bsize));
for (size_type ii = 0; ii < leqsize; ++ii,--asize,--bsize)
{
size_type i = asize-1;
size_type j = bsize-1;
if (a[i] < b[j])
return true;
else if (a[i] > b[j])
return false;
}
return (a.size() < b.size());
}
}
template <typename Block, typename Allocator>
bool oplessthan(const dynamic_bitset<Block, Allocator>& a,
const dynamic_bitset<Block, Allocator>& b)
{
// assert(a.size() == b.size());
typedef BOOST_DEDUCED_TYPENAME dynamic_bitset<Block, Allocator>::size_type size_type;
size_type asize(a.num_blocks());
size_type bsize(b.num_blocks());
assert(asize == 3);
assert(bsize == 4);
if (!bsize)
{
return false;
}
else if (!asize)
{
return true;
}
else
{
size_type leqsize(std::min BOOST_PREVENT_MACRO_SUBSTITUTION(asize,bsize));
assert(leqsize == 3);
//if (a.size() == 0)
// return false;
// Since we are storing the most significant bit
// at pos == size() - 1, we need to do the comparisons in reverse.
//
for (size_type ii = 0; ii < leqsize; ++ii,--asize,--bsize)
{
size_type i = asize-1;
size_type j = bsize-1;
if (a.m_bits[i] < b.m_bits[j])
return true;
else if (a.m_bits[i] > b.m_bits[j])
return false;
}
return (a.num_blocks() < b.num_blocks());
}
}
template <typename Block, typename Allocator>
inline bool operator<=(const dynamic_bitset<Block, Allocator>& a,
const dynamic_bitset<Block, Allocator>& b)
{
return !(a > b);
}
template <typename Block, typename Allocator>
inline bool operator>(const dynamic_bitset<Block, Allocator>& a,
const dynamic_bitset<Block, Allocator>& b)
{
return b < a;
}
template <typename Block, typename Allocator>
inline bool operator>=(const dynamic_bitset<Block, Allocator>& a,
const dynamic_bitset<Block, Allocator>& b)
{
return !(a < b);
}
//-----------------------------------------------------------------------------
// hash operations
template <typename Block, typename Allocator>
inline std::size_t hash_value(const dynamic_bitset<Block, Allocator>& a)
{
std::size_t res = hash_value(a.m_num_bits);
boost::hash_combine(res, a.m_bits);
return res;
}
//-----------------------------------------------------------------------------
// stream operations
#ifdef BOOST_OLD_IOSTREAMS
template < typename Block, typename Alloc>
std::ostream&
operator<<(std::ostream& os, const dynamic_bitset<Block, Alloc>& b)
{
// NOTE: since this is aimed at "classic" iostreams, exception
// masks on the stream are not supported. The library that
// ships with gcc 2.95 has an exceptions() member function but
// nothing is actually implemented; not even the class ios::failure.
using namespace std;
const ios::iostate ok = ios::goodbit;
ios::iostate err = ok;
if (os.opfx()) {
//try
typedef typename dynamic_bitset<Block, Alloc>::size_type bitsetsize_type;
const bitsetsize_type sz = b.size();
std::streambuf * buf = os.rdbuf();
size_t npad = os.width() <= 0 // careful: os.width() is signed (and can be < 0)
|| (bitsetsize_type) os.width() <= sz? 0 : os.width() - sz;
const char fill_char = os.fill();
const ios::fmtflags adjustfield = os.flags() & ios::adjustfield;
// if needed fill at left; pad is decresed along the way
if (adjustfield != ios::left) {
for (; 0 < npad; --npad)
if (fill_char != buf->sputc(fill_char)) {
err |= ios::failbit;
break;
}
}
if (err == ok) {
// output the bitset
for (bitsetsize_type i = b.size(); 0 < i; --i) {
const char dig = b.test(i-1)? '1' : '0';
if (EOF == buf->sputc(dig)) {
err |= ios::failbit;
break;
}
}
}
if (err == ok) {
// if needed fill at right
for (; 0 < npad; --npad) {
if (fill_char != buf->sputc(fill_char)) {
err |= ios::failbit;
break;
}
}
}
os.osfx();
os.width(0);
} // if opfx
if(err != ok)
os.setstate(err); // assume this does NOT throw
return os;
}
#else
template <typename Ch, typename Tr, typename Block, typename Alloc>
std::basic_ostream<Ch, Tr>&
operator<<(std::basic_ostream<Ch, Tr>& os,
const dynamic_bitset<Block, Alloc>& b)
{
using namespace std;
const ios_base::iostate ok = ios_base::goodbit;
ios_base::iostate err = ok;
typename basic_ostream<Ch, Tr>::sentry cerberos(os);
if (cerberos) {
BOOST_DYNAMIC_BITSET_CTYPE_FACET(Ch, fac, os.getloc());
const Ch zero = BOOST_DYNAMIC_BITSET_WIDEN_CHAR(fac, '0');
const Ch one = BOOST_DYNAMIC_BITSET_WIDEN_CHAR(fac, '1');
BOOST_TRY {
typedef typename dynamic_bitset<Block, Alloc>::size_type bitset_size_type;
typedef basic_streambuf<Ch, Tr> buffer_type;
buffer_type * buf = os.rdbuf();
// careful: os.width() is signed (and can be < 0)
const bitset_size_type width = (os.width() <= 0) ? 0 : static_cast<bitset_size_type>(os.width());
streamsize npad = (width <= b.size()) ? 0 : width - b.size();
const Ch fill_char = os.fill();
const ios_base::fmtflags adjustfield = os.flags() & ios_base::adjustfield;
// if needed fill at left; pad is decreased along the way
if (adjustfield != ios_base::left) {
for (; 0 < npad; --npad)
if (Tr::eq_int_type(Tr::eof(), buf->sputc(fill_char))) {
err |= ios_base::failbit;
break;
}
}
if (err == ok) {
// output the bitset
for (bitset_size_type i = b.size(); 0 < i; --i) {
typename buffer_type::int_type
ret = buf->sputc(b.test(i-1)? one : zero);
if (Tr::eq_int_type(Tr::eof(), ret)) {
err |= ios_base::failbit;
break;
}
}
}
if (err == ok) {
// if needed fill at right
for (; 0 < npad; --npad) {
if (Tr::eq_int_type(Tr::eof(), buf->sputc(fill_char))) {
err |= ios_base::failbit;
break;
}
}
}
os.width(0);
} BOOST_CATCH (...) { // see std 27.6.1.1/4
bool rethrow = false;
BOOST_TRY { os.setstate(ios_base::failbit); } BOOST_CATCH (...) { rethrow = true; } BOOST_CATCH_END
if (rethrow)
BOOST_RETHROW;
}
BOOST_CATCH_END
}
if(err != ok)
os.setstate(err); // may throw exception
return os;
}
#endif
#ifdef BOOST_OLD_IOSTREAMS
// A sentry-like class that calls isfx in its destructor.
// "Necessary" because bit_appender::do_append may throw.
class pseudo_sentry {
std::istream & m_r;
const bool m_ok;
public:
explicit pseudo_sentry(std::istream & r) : m_r(r), m_ok(r.ipfx(0)) { }
~pseudo_sentry() { m_r.isfx(); }
operator bool() const { return m_ok; }
};
template <typename Block, typename Alloc>
std::istream&
operator>>(std::istream& is, dynamic_bitset<Block, Alloc>& b)
{
// Extractor for classic IO streams (libstdc++ < 3.0)
// ----------------------------------------------------//
// It's assumed that the stream buffer functions, and
// the stream's setstate() _cannot_ throw.
typedef dynamic_bitset<Block, Alloc> bitset_type;
typedef typename bitset_type::size_type size_type;
std::ios::iostate err = std::ios::goodbit;
pseudo_sentry cerberos(is); // skips whitespaces
if(cerberos) {
b.clear();
const std::streamsize w = is.width();
const size_type limit = w > 0 && static_cast<size_type>(w) < b.max_size()
? static_cast<size_type>(w) : b.max_size();
typename bitset_type::bit_appender appender(b);
std::streambuf * buf = is.rdbuf();
for(int c = buf->sgetc(); appender.get_count() < limit; c = buf->snextc() ) {
if (c == EOF) {
err |= std::ios::eofbit;
break;
}
else if (char(c) != '0' && char(c) != '1')
break; // non digit character
else {
BOOST_TRY {
appender.do_append(char(c) == '1');
}
BOOST_CATCH(...) {
is.setstate(std::ios::failbit); // assume this can't throw
BOOST_RETHROW;
}
BOOST_CATCH_END
}
} // for
}
is.width(0);
if (b.size() == 0)
err |= std::ios::failbit;
if (err != std::ios::goodbit)
is.setstate (err); // may throw
return is;
}
#else // BOOST_OLD_IOSTREAMS
template <typename Ch, typename Tr, typename Block, typename Alloc>
std::basic_istream<Ch, Tr>&
operator>>(std::basic_istream<Ch, Tr>& is, dynamic_bitset<Block, Alloc>& b)
{
using namespace std;
typedef dynamic_bitset<Block, Alloc> bitset_type;
typedef typename bitset_type::size_type size_type;
const streamsize w = is.width();
const size_type limit = 0 < w && static_cast<size_type>(w) < b.max_size()?
static_cast<size_type>(w) : b.max_size();
ios_base::iostate err = ios_base::goodbit;
typename basic_istream<Ch, Tr>::sentry cerberos(is); // skips whitespaces
if(cerberos) {
// in accordance with prop. resol. of lib DR 303 [last checked 4 Feb 2004]
BOOST_DYNAMIC_BITSET_CTYPE_FACET(Ch, fac, is.getloc());
const Ch zero = BOOST_DYNAMIC_BITSET_WIDEN_CHAR(fac, '0');
const Ch one = BOOST_DYNAMIC_BITSET_WIDEN_CHAR(fac, '1');
b.clear();
BOOST_TRY {
typename bitset_type::bit_appender appender(b);
basic_streambuf <Ch, Tr> * buf = is.rdbuf();
typename Tr::int_type c = buf->sgetc();
for( ; appender.get_count() < limit; c = buf->snextc() ) {
if (Tr::eq_int_type(Tr::eof(), c)) {
err |= ios_base::eofbit;
break;
}
else {
const Ch to_c = Tr::to_char_type(c);
const bool is_one = Tr::eq(to_c, one);
if (!is_one && !Tr::eq(to_c, zero))
break; // non digit character
appender.do_append(is_one);
}
} // for
}
BOOST_CATCH (...) {
// catches from stream buf, or from vector:
//
// bits_stored bits have been extracted and stored, and
// either no further character is extractable or we can't
// append to the underlying vector (out of memory)
bool rethrow = false; // see std 27.6.1.1/4
BOOST_TRY { is.setstate(ios_base::badbit); }
BOOST_CATCH(...) { rethrow = true; }
BOOST_CATCH_END
if (rethrow)
BOOST_RETHROW;
}
BOOST_CATCH_END
}
is.width(0);
if (b.size() == 0 /*|| !cerberos*/)
err |= ios_base::failbit;
if (err != ios_base::goodbit)
is.setstate (err); // may throw
return is;
}
#endif
//-----------------------------------------------------------------------------
// bitset operations
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>
operator&(const dynamic_bitset<Block, Allocator>& x,
const dynamic_bitset<Block, Allocator>& y)
{
dynamic_bitset<Block, Allocator> b(x);
return b &= y;
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>
operator|(const dynamic_bitset<Block, Allocator>& x,
const dynamic_bitset<Block, Allocator>& y)
{
dynamic_bitset<Block, Allocator> b(x);
return b |= y;
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>
operator^(const dynamic_bitset<Block, Allocator>& x,
const dynamic_bitset<Block, Allocator>& y)
{
dynamic_bitset<Block, Allocator> b(x);
return b ^= y;
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>
operator-(const dynamic_bitset<Block, Allocator>& x,
const dynamic_bitset<Block, Allocator>& y)
{
dynamic_bitset<Block, Allocator> b(x);
return b -= y;
}
//-----------------------------------------------------------------------------
// namespace scope swap
template<typename Block, typename Allocator>
inline void
swap(dynamic_bitset<Block, Allocator>& left,
dynamic_bitset<Block, Allocator>& right) // no throw
{
left.swap(right);
}
//-----------------------------------------------------------------------------
// private (on conforming compilers) member functions
template <typename Block, typename Allocator>
inline typename dynamic_bitset<Block, Allocator>::size_type
dynamic_bitset<Block, Allocator>::calc_num_blocks(size_type num_bits)
{
return num_bits / bits_per_block
+ static_cast<size_type>( num_bits % bits_per_block != 0 );
}
// gives a reference to the highest block
//
template <typename Block, typename Allocator>
inline Block& dynamic_bitset<Block, Allocator>::m_highest_block()
{
return const_cast<Block &>
(static_cast<const dynamic_bitset *>(this)->m_highest_block());
}
// gives a const-reference to the highest block
//
template <typename Block, typename Allocator>
inline const Block& dynamic_bitset<Block, Allocator>::m_highest_block() const
{
assert(size() > 0 && num_blocks() > 0);
return m_bits.back();
}
template <typename Block, typename Allocator>
dynamic_bitset<Block, Allocator>& dynamic_bitset<Block, Allocator>::range_operation(
size_type pos, size_type len,
Block (*partial_block_operation)(Block, size_type, size_type),
Block (*full_block_operation)(Block))
{
assert(pos + len <= m_num_bits);
// Do nothing in case of zero length
if (!len)
return *this;
// Use an additional asserts in order to detect size_type overflow
// For example: pos = 10, len = size_type_limit - 2, pos + len = 7
// In case of overflow, 'pos + len' is always smaller than 'len'
assert(pos + len >= len);
// Start and end blocks of the [pos; pos + len - 1] sequence
const size_type first_block = block_index(pos);
const size_type last_block = block_index(pos + len - 1);
const size_type first_bit_index = bit_index(pos);
const size_type last_bit_index = bit_index(pos + len - 1);
if (first_block == last_block) {
// Filling only a sub-block of a block
m_bits[first_block] = partial_block_operation(m_bits[first_block],
first_bit_index, last_bit_index);
} else {
// Check if the corner blocks won't be fully filled with 'val'
const size_type first_block_shift = bit_index(pos) ? 1 : 0;
const size_type last_block_shift = (bit_index(pos + len - 1)
== bits_per_block - 1) ? 0 : 1;
// Blocks that will be filled with ~0 or 0 at once
const size_type first_full_block = first_block + first_block_shift;
const size_type last_full_block = last_block - last_block_shift;
for (size_type i = first_full_block; i <= last_full_block; ++i) {
m_bits[i] = full_block_operation(m_bits[i]);
}
// Fill the first block from the 'first' bit index to the end
if (first_block_shift) {
m_bits[first_block] = partial_block_operation(m_bits[first_block],
first_bit_index, bits_per_block - 1);
}
// Fill the last block from the start to the 'last' bit index
if (last_block_shift) {
m_bits[last_block] = partial_block_operation(m_bits[last_block],
0, last_bit_index);
}
}
return *this;
}
// If size() is not a multiple of bits_per_block
// then not all the bits in the last block are used.
// This function resets the unused bits (convenient
// for the implementation of many member functions)
//
template <typename Block, typename Allocator>
inline void dynamic_bitset<Block, Allocator>::m_zero_unused_bits()
{
assert (num_blocks() == calc_num_blocks(m_num_bits));
// if != 0 this is the number of bits used in the last block
const block_width_type extra_bits = count_extra_bits();
if (extra_bits != 0)
m_highest_block() &= (Block(1) << extra_bits) - 1;
}
// check class invariants
template <typename Block, typename Allocator>
bool dynamic_bitset<Block, Allocator>::m_check_invariants() const
{
const block_width_type extra_bits = count_extra_bits();
if (extra_bits > 0) {
const block_type mask = block_type(~0) << extra_bits;
if ((m_highest_block() & mask) != 0)
return false;
}
if (m_bits.size() > m_bits.capacity() || num_blocks() != calc_num_blocks(size()))
return false;
return true;
}
} // namespace boost
#undef BOOST_BITSET_CHAR
// std::hash support
#if !defined(BOOST_NO_CXX11_HDR_FUNCTIONAL) && !defined(BOOST_DYNAMIC_BITSET_NO_STD_HASH)
#include <functional>
namespace std
{
template<typename Block, typename Allocator>
struct hash< boost::dynamic_bitset<Block, Allocator> >
{
typedef boost::dynamic_bitset<Block, Allocator> argument_type;
typedef std::size_t result_type;
result_type operator()(const argument_type& a) const BOOST_NOEXCEPT
{
boost::hash<argument_type> hasher;
return hasher(a);
}
};
}
#endif
#endif // include guard