boost/multiprecision/rational_adaptor.hpp
///////////////////////////////////////////////////////////////
// Copyright 2011 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_
#ifndef BOOST_MATH_RATIONAL_ADAPTER_HPP
#define BOOST_MATH_RATIONAL_ADAPTER_HPP
#include <iostream>
#include <iomanip>
#include <sstream>
#include <boost/cstdint.hpp>
#include <boost/functional/hash_fwd.hpp>
#include <boost/multiprecision/number.hpp>
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable:4512 4127)
#endif
#include <boost/rational.hpp>
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
namespace boost{
namespace multiprecision{
namespace backends{
template <class IntBackend>
struct rational_adaptor
{
typedef number<IntBackend> integer_type;
typedef boost::rational<integer_type> rational_type;
typedef typename IntBackend::signed_types signed_types;
typedef typename IntBackend::unsigned_types unsigned_types;
typedef typename IntBackend::float_types float_types;
rational_adaptor() BOOST_MP_NOEXCEPT_IF(noexcept(rational_type())) {}
rational_adaptor(const rational_adaptor& o) BOOST_MP_NOEXCEPT_IF(noexcept(std::declval<rational_type&>() = std::declval<const rational_type&>()))
{
m_value = o.m_value;
}
rational_adaptor(const IntBackend& o) BOOST_MP_NOEXCEPT_IF(noexcept(rational_type(std::declval<const IntBackend&>()))) : m_value(o) {}
template <class U>
rational_adaptor(const U& u, typename enable_if_c<is_convertible<U, IntBackend>::value>::type* = 0)
: m_value(static_cast<integer_type>(u)){}
template <class U>
explicit rational_adaptor(const U& u,
typename enable_if_c<
boost::multiprecision::detail::is_explicitly_convertible<U, IntBackend>::value && !is_convertible<U, IntBackend>::value
>::type* = 0)
: m_value(IntBackend(u)){}
template <class U>
typename enable_if_c<(boost::multiprecision::detail::is_explicitly_convertible<U, IntBackend>::value && !is_arithmetic<U>::value), rational_adaptor&>::type operator = (const U& u)
{
m_value = IntBackend(u);
return *this;
}
#ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
rational_adaptor(rational_adaptor&& o) BOOST_MP_NOEXCEPT_IF(noexcept(rational_type(std::declval<rational_type>()))) : m_value(static_cast<rational_type&&>(o.m_value)) {}
rational_adaptor(IntBackend&& o) BOOST_MP_NOEXCEPT_IF(noexcept(rational_type(std::declval<IntBackend>()))) : m_value(static_cast<IntBackend&&>(o)) {}
rational_adaptor& operator = (rational_adaptor&& o) BOOST_MP_NOEXCEPT_IF(noexcept(std::declval<rational_type&>() = std::declval<rational_type>()))
{
m_value = static_cast<rational_type&&>(o.m_value);
return *this;
}
#endif
rational_adaptor& operator = (const rational_adaptor& o)
{
m_value = o.m_value;
return *this;
}
rational_adaptor& operator = (const IntBackend& o)
{
m_value = o;
return *this;
}
template <class Int>
typename enable_if<is_integral<Int>, rational_adaptor&>::type operator = (Int i)
{
m_value = i;
return *this;
}
template <class Float>
typename enable_if<is_floating_point<Float>, rational_adaptor&>::type operator = (Float i)
{
int e;
Float f = std::frexp(i, &e);
f = std::ldexp(f, std::numeric_limits<Float>::digits);
e -= std::numeric_limits<Float>::digits;
integer_type num(f);
integer_type denom(1u);
if(e > 0)
{
num <<= e;
}
else if(e < 0)
{
denom <<= -e;
}
m_value.assign(num, denom);
return *this;
}
rational_adaptor& operator = (const char* s)
{
std::string s1;
multiprecision::number<IntBackend> v1, v2;
char c;
bool have_hex = false;
const char* p = s; // saved for later
while((0 != (c = *s)) && (c == 'x' || c == 'X' || c == '-' || c == '+' || (c >= '0' && c <= '9') || (have_hex && (c >= 'a' && c <= 'f')) || (have_hex && (c >= 'A' && c <= 'F'))))
{
if(c == 'x' || c == 'X')
have_hex = true;
s1.append(1, c);
++s;
}
v1.assign(s1);
s1.erase();
if(c == '/')
{
++s;
while((0 != (c = *s)) && (c == 'x' || c == 'X' || c == '-' || c == '+' || (c >= '0' && c <= '9') || (have_hex && (c >= 'a' && c <= 'f')) || (have_hex && (c >= 'A' && c <= 'F'))))
{
if(c == 'x' || c == 'X')
have_hex = true;
s1.append(1, c);
++s;
}
v2.assign(s1);
}
else
v2 = 1;
if(*s)
{
BOOST_THROW_EXCEPTION(std::runtime_error(std::string("Could not parse the string \"") + p + std::string("\" as a valid rational number.")));
}
data().assign(v1, v2);
return *this;
}
void swap(rational_adaptor& o)
{
std::swap(m_value, o.m_value);
}
std::string str(std::streamsize digits, std::ios_base::fmtflags f)const
{
//
// We format the string ourselves so we can match what GMP's mpq type does:
//
std::string result = data().numerator().str(digits, f);
if(data().denominator() != 1)
{
result.append(1, '/');
result.append(data().denominator().str(digits, f));
}
return result;
}
void negate()
{
m_value = -m_value;
}
int compare(const rational_adaptor& o)const
{
return m_value > o.m_value ? 1 : (m_value < o.m_value ? -1 : 0);
}
template <class Arithmatic>
typename enable_if_c<is_arithmetic<Arithmatic>::value && !is_floating_point<Arithmatic>::value, int>::type compare(Arithmatic i)const
{
return m_value > i ? 1 : (m_value < i ? -1 : 0);
}
template <class Arithmatic>
typename enable_if_c<is_floating_point<Arithmatic>::value, int>::type compare(Arithmatic i)const
{
rational_adaptor r;
r = i;
return this->compare(r);
}
rational_type& data() { return m_value; }
const rational_type& data()const { return m_value; }
template <class Archive>
void serialize(Archive& ar, const mpl::true_&)
{
// Saving
integer_type n(m_value.numerator()), d(m_value.denominator());
ar & n;
ar & d;
}
template <class Archive>
void serialize(Archive& ar, const mpl::false_&)
{
// Loading
integer_type n, d;
ar & n;
ar & d;
m_value.assign(n, d);
}
template <class Archive>
void serialize(Archive& ar, const unsigned int /*version*/)
{
typedef typename Archive::is_saving tag;
serialize(ar, tag());
}
private:
rational_type m_value;
};
template <class IntBackend>
inline void eval_add(rational_adaptor<IntBackend>& result, const rational_adaptor<IntBackend>& o)
{
result.data() += o.data();
}
template <class IntBackend>
inline void eval_subtract(rational_adaptor<IntBackend>& result, const rational_adaptor<IntBackend>& o)
{
result.data() -= o.data();
}
template <class IntBackend>
inline void eval_multiply(rational_adaptor<IntBackend>& result, const rational_adaptor<IntBackend>& o)
{
result.data() *= o.data();
}
template <class IntBackend>
inline void eval_divide(rational_adaptor<IntBackend>& result, const rational_adaptor<IntBackend>& o)
{
using default_ops::eval_is_zero;
if(eval_is_zero(o))
{
BOOST_THROW_EXCEPTION(std::overflow_error("Divide by zero."));
}
result.data() /= o.data();
}
template <class R, class IntBackend>
inline typename enable_if_c<number_category<R>::value == number_kind_floating_point>::type eval_convert_to(R* result, const rational_adaptor<IntBackend>& backend)
{
//
// The generic conversion is as good as anything we can write here:
//
::boost::multiprecision::detail::generic_convert_rational_to_float(*result, backend);
}
template <class R, class IntBackend>
inline typename enable_if_c<(number_category<R>::value != number_kind_integer) && (number_category<R>::value != number_kind_floating_point)>::type eval_convert_to(R* result, const rational_adaptor<IntBackend>& backend)
{
typedef typename component_type<number<rational_adaptor<IntBackend> > >::type comp_t;
comp_t num(backend.data().numerator());
comp_t denom(backend.data().denominator());
*result = num.template convert_to<R>();
*result /= denom.template convert_to<R>();
}
template <class R, class IntBackend>
inline typename enable_if_c<number_category<R>::value == number_kind_integer>::type eval_convert_to(R* result, const rational_adaptor<IntBackend>& backend)
{
typedef typename component_type<number<rational_adaptor<IntBackend> > >::type comp_t;
comp_t t = backend.data().numerator();
t /= backend.data().denominator();
*result = t.template convert_to<R>();
}
template <class IntBackend>
inline bool eval_is_zero(const rational_adaptor<IntBackend>& val)
{
using default_ops::eval_is_zero;
return eval_is_zero(val.data().numerator().backend());
}
template <class IntBackend>
inline int eval_get_sign(const rational_adaptor<IntBackend>& val)
{
using default_ops::eval_get_sign;
return eval_get_sign(val.data().numerator().backend());
}
template<class IntBackend, class V>
inline void assign_components(rational_adaptor<IntBackend>& result, const V& v1, const V& v2)
{
result.data().assign(v1, v2);
}
template <class IntBackend>
inline std::size_t hash_value(const rational_adaptor<IntBackend>& val)
{
std::size_t result = hash_value(val.data().numerator());
boost::hash_combine(result, val.data().denominator());
return result;
}
} // namespace backends
template<class IntBackend>
struct expression_template_default<backends::rational_adaptor<IntBackend> > : public expression_template_default<IntBackend> {};
template<class IntBackend>
struct number_category<backends::rational_adaptor<IntBackend> > : public mpl::int_<number_kind_rational>{};
using boost::multiprecision::backends::rational_adaptor;
template <class Backend, expression_template_option ExpressionTemplates>
struct component_type<number<backends::rational_adaptor<Backend>, ExpressionTemplates> >
{
typedef number<Backend, ExpressionTemplates> type;
};
template <class IntBackend, expression_template_option ET>
inline number<IntBackend, ET> numerator(const number<rational_adaptor<IntBackend>, ET>& val)
{
return val.backend().data().numerator();
}
template <class IntBackend, expression_template_option ET>
inline number<IntBackend, ET> denominator(const number<rational_adaptor<IntBackend>, ET>& val)
{
return val.backend().data().denominator();
}
#ifdef BOOST_NO_SFINAE_EXPR
namespace detail{
template<class U, class IntBackend>
struct is_explicitly_convertible<U, rational_adaptor<IntBackend> > : public is_explicitly_convertible<U, IntBackend> {};
}
#endif
}} // namespaces
namespace std{
template <class IntBackend, boost::multiprecision::expression_template_option ExpressionTemplates>
class numeric_limits<boost::multiprecision::number<boost::multiprecision::rational_adaptor<IntBackend>, ExpressionTemplates> > : public std::numeric_limits<boost::multiprecision::number<IntBackend, ExpressionTemplates> >
{
typedef std::numeric_limits<boost::multiprecision::number<IntBackend> > base_type;
typedef boost::multiprecision::number<boost::multiprecision::rational_adaptor<IntBackend> > number_type;
public:
BOOST_STATIC_CONSTEXPR bool is_integer = false;
BOOST_STATIC_CONSTEXPR bool is_exact = true;
BOOST_STATIC_CONSTEXPR number_type (min)() { return (base_type::min)(); }
BOOST_STATIC_CONSTEXPR number_type (max)() { return (base_type::max)(); }
BOOST_STATIC_CONSTEXPR number_type lowest() { return -(max)(); }
BOOST_STATIC_CONSTEXPR number_type epsilon() { return base_type::epsilon(); }
BOOST_STATIC_CONSTEXPR number_type round_error() { return epsilon() / 2; }
BOOST_STATIC_CONSTEXPR number_type infinity() { return base_type::infinity(); }
BOOST_STATIC_CONSTEXPR number_type quiet_NaN() { return base_type::quiet_NaN(); }
BOOST_STATIC_CONSTEXPR number_type signaling_NaN() { return base_type::signaling_NaN(); }
BOOST_STATIC_CONSTEXPR number_type denorm_min() { return base_type::denorm_min(); }
};
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
template <class IntBackend, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::rational_adaptor<IntBackend>, ExpressionTemplates> >::is_integer;
template <class IntBackend, boost::multiprecision::expression_template_option ExpressionTemplates>
BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::rational_adaptor<IntBackend>, ExpressionTemplates> >::is_exact;
#endif
}
#endif