boost/graph/planar_detail/face_handles.hpp
//=======================================================================
// Copyright (c) Aaron Windsor 2007
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef __FACE_HANDLES_HPP__
#define __FACE_HANDLES_HPP__
#include <list>
#include <boost/graph/graph_traits.hpp>
#include <boost/shared_ptr.hpp>
// A "face handle" is an optimization meant to serve two purposes in
// the implementation of the Boyer-Myrvold planarity test: (1) it holds
// the partial planar embedding of a particular vertex as it's being
// constructed, and (2) it allows for efficient traversal around the
// outer face of the partial embedding at that particular vertex. A face
// handle is lightweight, just a shared pointer to the actual implementation,
// since it is passed around/copied liberally in the algorithm. It consists
// of an "anchor" (the actual vertex it's associated with) as well as a
// sequence of edges. The functions first_vertex/second_vertex and
// first_edge/second_edge allow fast access to the beginning and end of the
// stored sequence, which allows one to traverse the outer face of the partial
// planar embedding as it's being created.
//
// There are some policies below that define the contents of the face handles:
// in the case no embedding is needed (for example, if one just wants to use
// the Boyer-Myrvold algorithm as a true/false test for planarity, the
// no_embedding class can be passed as the StoreEmbedding policy. Otherwise,
// either std_list (which uses as std::list) or recursive_lazy_list can be
// passed as this policy. recursive_lazy_list has the best theoretical
// performance (O(n) for a sequence of interleaved concatenations and reversals
// of the underlying list), but I've noticed little difference between std_list
// and recursive_lazy_list in my tests, even though using std_list changes
// the worst-case complexity of the planarity test to O(n^2)
//
// Another policy is StoreOldHandlesPolicy, which specifies whether or not
// to keep a record of the previous first/second vertex/edge - this is needed
// if a Kuratowski subgraph needs to be isolated.
namespace boost { namespace graph { namespace detail {
//face handle policies
//EmbeddingStorage policy
struct store_embedding {};
struct recursive_lazy_list : public store_embedding {};
struct std_list : public store_embedding {};
struct no_embedding {};
//StoreOldHandlesPolicy
struct store_old_handles {};
struct no_old_handles {};
template<typename DataType>
struct lazy_list_node
{
typedef shared_ptr< lazy_list_node<DataType> > ptr_t;
lazy_list_node(const DataType& data) :
m_reversed(false),
m_data(data),
m_has_data(true)
{}
lazy_list_node(ptr_t left_child, ptr_t right_child) :
m_reversed(false),
m_has_data(false),
m_left_child(left_child),
m_right_child(right_child)
{}
bool m_reversed;
DataType m_data;
bool m_has_data;
shared_ptr<lazy_list_node> m_left_child;
shared_ptr<lazy_list_node> m_right_child;
};
template <typename StoreOldHandlesPolicy, typename Vertex, typename Edge>
struct old_handles_storage;
template <typename Vertex, typename Edge>
struct old_handles_storage<store_old_handles, Vertex, Edge>
{
Vertex first_vertex;
Vertex second_vertex;
Edge first_edge;
Edge second_edge;
};
template <typename Vertex, typename Edge>
struct old_handles_storage<no_old_handles, Vertex, Edge>
{};
template <typename StoreEmbeddingPolicy, typename Edge>
struct edge_list_storage;
template <typename Edge>
struct edge_list_storage<no_embedding, Edge>
{
typedef void type;
void push_back(Edge) {}
void push_front(Edge) {}
void reverse() {}
void concat_front(edge_list_storage<no_embedding,Edge>) {}
void concat_back(edge_list_storage<no_embedding,Edge>) {}
template <typename OutputIterator>
void get_list(OutputIterator) {}
};
template <typename Edge>
struct edge_list_storage<recursive_lazy_list, Edge>
{
typedef lazy_list_node<Edge> node_type;
typedef shared_ptr< node_type > type;
type value;
void push_back(Edge e)
{
type new_node(new node_type(e));
value = type(new node_type(value, new_node));
}
void push_front(Edge e)
{
type new_node(new node_type(e));
value = type(new node_type(new_node, value));
}
void reverse()
{
value->m_reversed = !value->m_reversed;
}
void concat_front(edge_list_storage<recursive_lazy_list, Edge> other)
{
value = type(new node_type(other.value, value));
}
void concat_back(edge_list_storage<recursive_lazy_list, Edge> other)
{
value = type(new node_type(value, other.value));
}
template <typename OutputIterator>
void get_list(OutputIterator out)
{
get_list_helper(out, value);
}
private:
template <typename OutputIterator>
void get_list_helper(OutputIterator o_itr,
type root,
bool flipped = false
)
{
if (!root)
return;
if (root->m_has_data)
*o_itr = root->m_data;
if ((flipped && !root->m_reversed) ||
(!flipped && root->m_reversed)
)
{
get_list_helper(o_itr, root->m_right_child, true);
get_list_helper(o_itr, root->m_left_child, true);
}
else
{
get_list_helper(o_itr, root->m_left_child, false);
get_list_helper(o_itr, root->m_right_child, false);
}
}
};
template <typename Edge>
struct edge_list_storage<std_list, Edge>
{
typedef std::list<Edge> type;
type value;
void push_back(Edge e)
{
value.push_back(e);
}
void push_front(Edge e)
{
value.push_front(e);
}
void reverse()
{
value.reverse();
}
void concat_front(edge_list_storage<std_list,Edge> other)
{
value.splice(value.begin(), other.value);
}
void concat_back(edge_list_storage<std_list, Edge> other)
{
value.splice(value.end(), other.value);
}
template <typename OutputIterator>
void get_list(OutputIterator out)
{
std::copy(value.begin(), value.end(), out);
}
};
template<typename Graph,
typename StoreOldHandlesPolicy,
typename StoreEmbeddingPolicy
>
struct face_handle_impl
{
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
typedef typename graph_traits<Graph>::edge_descriptor edge_t;
typedef typename edge_list_storage<StoreEmbeddingPolicy, edge_t>::type
edge_list_storage_t;
face_handle_impl() :
cached_first_vertex(graph_traits<Graph>::null_vertex()),
cached_second_vertex(graph_traits<Graph>::null_vertex()),
true_first_vertex(graph_traits<Graph>::null_vertex()),
true_second_vertex(graph_traits<Graph>::null_vertex()),
anchor(graph_traits<Graph>::null_vertex())
{
initialize_old_vertices_dispatch(StoreOldHandlesPolicy());
}
void initialize_old_vertices_dispatch(store_old_handles)
{
old_handles.first_vertex = graph_traits<Graph>::null_vertex();
old_handles.second_vertex = graph_traits<Graph>::null_vertex();
}
void initialize_old_vertices_dispatch(no_old_handles) {}
vertex_t cached_first_vertex;
vertex_t cached_second_vertex;
vertex_t true_first_vertex;
vertex_t true_second_vertex;
vertex_t anchor;
edge_t cached_first_edge;
edge_t cached_second_edge;
edge_list_storage<StoreEmbeddingPolicy, edge_t> edge_list;
old_handles_storage<StoreOldHandlesPolicy, vertex_t, edge_t> old_handles;
};
template <typename Graph,
typename StoreOldHandlesPolicy = store_old_handles,
typename StoreEmbeddingPolicy = recursive_lazy_list
>
class face_handle
{
public:
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
typedef typename graph_traits<Graph>::edge_descriptor edge_t;
typedef face_handle_impl
<Graph, StoreOldHandlesPolicy, StoreEmbeddingPolicy> impl_t;
typedef face_handle
<Graph, StoreOldHandlesPolicy, StoreEmbeddingPolicy> self_t;
face_handle(vertex_t anchor = graph_traits<Graph>::null_vertex()) :
pimpl(new impl_t())
{
pimpl->anchor = anchor;
}
face_handle(vertex_t anchor, edge_t initial_edge, const Graph& g) :
pimpl(new impl_t())
{
vertex_t s(source(initial_edge,g));
vertex_t t(target(initial_edge,g));
vertex_t other_vertex = s == anchor ? t : s;
pimpl->anchor = anchor;
pimpl->cached_first_edge = initial_edge;
pimpl->cached_second_edge = initial_edge;
pimpl->cached_first_vertex = other_vertex;
pimpl->cached_second_vertex = other_vertex;
pimpl->true_first_vertex = other_vertex;
pimpl->true_second_vertex = other_vertex;
pimpl->edge_list.push_back(initial_edge);
store_old_face_handles_dispatch(StoreOldHandlesPolicy());
}
//default copy construction, assignment okay.
void push_first(edge_t e, const Graph& g)
{
pimpl->edge_list.push_front(e);
pimpl->cached_first_vertex = pimpl->true_first_vertex =
source(e, g) == pimpl->anchor ? target(e,g) : source(e,g);
pimpl->cached_first_edge = e;
}
void push_second(edge_t e, const Graph& g)
{
pimpl->edge_list.push_back(e);
pimpl->cached_second_vertex = pimpl->true_second_vertex =
source(e, g) == pimpl->anchor ? target(e,g) : source(e,g);
pimpl->cached_second_edge = e;
}
inline void store_old_face_handles()
{
store_old_face_handles_dispatch(StoreOldHandlesPolicy());
}
inline vertex_t first_vertex() const
{
return pimpl->cached_first_vertex;
}
inline vertex_t second_vertex() const
{
return pimpl->cached_second_vertex;
}
inline vertex_t true_first_vertex() const
{
return pimpl->true_first_vertex;
}
inline vertex_t true_second_vertex() const
{
return pimpl->true_second_vertex;
}
inline vertex_t old_first_vertex() const
{
return pimpl->old_handles.first_vertex;
}
inline vertex_t old_second_vertex() const
{
return pimpl->old_handles.second_vertex;
}
inline edge_t old_first_edge() const
{
return pimpl->old_handles.first_edge;
}
inline edge_t old_second_edge() const
{
return pimpl->old_handles.second_edge;
}
inline edge_t first_edge() const
{
return pimpl->cached_first_edge;
}
inline edge_t second_edge() const
{
return pimpl->cached_second_edge;
}
inline vertex_t get_anchor() const
{
return pimpl->anchor;
}
void glue_first_to_second
(face_handle<Graph,StoreOldHandlesPolicy,StoreEmbeddingPolicy>& bottom)
{
pimpl->edge_list.concat_front(bottom.pimpl->edge_list);
pimpl->true_first_vertex = bottom.pimpl->true_first_vertex;
pimpl->cached_first_vertex = bottom.pimpl->cached_first_vertex;
pimpl->cached_first_edge = bottom.pimpl->cached_first_edge;
}
void glue_second_to_first
(face_handle<Graph,StoreOldHandlesPolicy,StoreEmbeddingPolicy>& bottom)
{
pimpl->edge_list.concat_back(bottom.pimpl->edge_list);
pimpl->true_second_vertex = bottom.pimpl->true_second_vertex;
pimpl->cached_second_vertex = bottom.pimpl->cached_second_vertex;
pimpl->cached_second_edge = bottom.pimpl->cached_second_edge;
}
void flip()
{
pimpl->edge_list.reverse();
std::swap(pimpl->true_first_vertex, pimpl->true_second_vertex);
std::swap(pimpl->cached_first_vertex, pimpl->cached_second_vertex);
std::swap(pimpl->cached_first_edge, pimpl->cached_second_edge);
}
template <typename OutputIterator>
void get_list(OutputIterator o_itr)
{
pimpl->edge_list.get_list(o_itr);
}
void reset_vertex_cache()
{
pimpl->cached_first_vertex = pimpl->true_first_vertex;
pimpl->cached_second_vertex = pimpl->true_second_vertex;
}
inline void set_first_vertex(vertex_t v)
{
pimpl->cached_first_vertex = v;
}
inline void set_second_vertex(vertex_t v)
{
pimpl->cached_second_vertex = v;
}
private:
void store_old_face_handles_dispatch(store_old_handles)
{
pimpl->old_handles.first_vertex = pimpl->true_first_vertex;
pimpl->old_handles.second_vertex = pimpl->true_second_vertex;
pimpl->old_handles.first_edge = pimpl->cached_first_edge;
pimpl->old_handles.second_edge = pimpl->cached_second_edge;
}
void store_old_face_handles_dispatch(no_old_handles) {}
boost::shared_ptr<impl_t> pimpl;
};
} /* namespace detail */ } /* namespace graph */ } /* namespace boost */
#endif //__FACE_HANDLES_HPP__