boost/graph/kruskal_min_spanning_tree.hpp
//
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
//
#ifndef BOOST_GRAPH_MST_KRUSKAL_HPP
#define BOOST_GRAPH_MST_KRUSKAL_HPP
/*
*Minimum Spanning Tree
* Kruskal Algorithm
*
*Requirement:
* undirected graph
*/
#include <vector>
#include <queue>
#include <functional>
#include <boost/property_map/property_map.hpp>
#include <boost/graph/graph_concepts.hpp>
#include <boost/graph/named_function_params.hpp>
#include <boost/pending/disjoint_sets.hpp>
#include <boost/pending/indirect_cmp.hpp>
#include <boost/concept/assert.hpp>
namespace boost {
// Kruskal's algorithm for Minimum Spanning Tree
//
// This is a greedy algorithm to calculate the Minimum Spanning Tree
// for an undirected graph with weighted edges. The output will be a
// set of edges.
//
namespace detail {
template <class Graph, class OutputIterator,
class Rank, class Parent, class Weight>
void
kruskal_mst_impl(const Graph& G,
OutputIterator spanning_tree_edges,
Rank rank, Parent parent, Weight weight)
{
if (num_vertices(G) == 0) return; // Nothing to do in this case
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
typedef typename graph_traits<Graph>::edge_descriptor Edge;
BOOST_CONCEPT_ASSERT(( VertexListGraphConcept<Graph> ));
BOOST_CONCEPT_ASSERT(( EdgeListGraphConcept<Graph> ));
BOOST_CONCEPT_ASSERT(( OutputIteratorConcept<OutputIterator, Edge> ));
BOOST_CONCEPT_ASSERT(( ReadWritePropertyMapConcept<Rank, Vertex> ));
BOOST_CONCEPT_ASSERT(( ReadWritePropertyMapConcept<Parent, Vertex> ));
BOOST_CONCEPT_ASSERT(( ReadablePropertyMapConcept<Weight, Edge> ));
typedef typename property_traits<Weight>::value_type W_value;
typedef typename property_traits<Rank>::value_type R_value;
typedef typename property_traits<Parent>::value_type P_value;
BOOST_CONCEPT_ASSERT(( ComparableConcept<W_value> ));
BOOST_CONCEPT_ASSERT(( ConvertibleConcept<P_value, Vertex> ));
BOOST_CONCEPT_ASSERT(( IntegerConcept<R_value> ));
disjoint_sets<Rank, Parent> dset(rank, parent);
typename graph_traits<Graph>::vertex_iterator ui, uiend;
for (boost::tie(ui, uiend) = vertices(G); ui != uiend; ++ui)
dset.make_set(*ui);
typedef indirect_cmp<Weight, std::greater<W_value> > weight_greater;
weight_greater wl(weight);
std::priority_queue<Edge, std::vector<Edge>, weight_greater> Q(wl);
/*push all edge into Q*/
typename graph_traits<Graph>::edge_iterator ei, eiend;
for (boost::tie(ei, eiend) = edges(G); ei != eiend; ++ei)
Q.push(*ei);
while (! Q.empty()) {
Edge e = Q.top();
Q.pop();
Vertex u = dset.find_set(source(e, G));
Vertex v = dset.find_set(target(e, G));
if ( u != v ) {
*spanning_tree_edges++ = e;
dset.link(u, v);
}
}
}
} // namespace detail
// Named Parameters Variants
template <class Graph, class OutputIterator>
inline void
kruskal_minimum_spanning_tree(const Graph& g,
OutputIterator spanning_tree_edges)
{
typedef typename graph_traits<Graph>::vertices_size_type size_type;
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
if (num_vertices(g) == 0) return; // Nothing to do in this case
typename graph_traits<Graph>::vertices_size_type
n = num_vertices(g);
std::vector<size_type> rank_map(n);
std::vector<vertex_t> pred_map(n);
detail::kruskal_mst_impl
(g, spanning_tree_edges,
make_iterator_property_map(rank_map.begin(), get(vertex_index, g), rank_map[0]),
make_iterator_property_map(pred_map.begin(), get(vertex_index, g), pred_map[0]),
get(edge_weight, g));
}
template <class Graph, class OutputIterator, class P, class T, class R>
inline void
kruskal_minimum_spanning_tree(const Graph& g,
OutputIterator spanning_tree_edges,
const bgl_named_params<P, T, R>& params)
{
typedef typename graph_traits<Graph>::vertices_size_type size_type;
typedef typename graph_traits<Graph>::vertex_descriptor vertex_t;
if (num_vertices(g) == 0) return; // Nothing to do in this case
typename graph_traits<Graph>::vertices_size_type n;
n = is_default_param(get_param(params, vertex_rank))
? num_vertices(g) : 1;
std::vector<size_type> rank_map(n);
n = is_default_param(get_param(params, vertex_predecessor))
? num_vertices(g) : 1;
std::vector<vertex_t> pred_map(n);
detail::kruskal_mst_impl
(g, spanning_tree_edges,
choose_param
(get_param(params, vertex_rank),
make_iterator_property_map
(rank_map.begin(),
choose_pmap(get_param(params, vertex_index), g, vertex_index), rank_map[0])),
choose_param
(get_param(params, vertex_predecessor),
make_iterator_property_map
(pred_map.begin(),
choose_const_pmap(get_param(params, vertex_index), g, vertex_index),
pred_map[0])),
choose_const_pmap(get_param(params, edge_weight), g, edge_weight));
}
} // namespace boost
#endif // BOOST_GRAPH_MST_KRUSKAL_HPP