boost/graph/stoer_wagner_min_cut.hpp
// Copyright Daniel Trebbien 2010.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or the copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GRAPH_STOER_WAGNER_MIN_CUT_HPP
#define BOOST_GRAPH_STOER_WAGNER_MIN_CUT_HPP 1
#include <boost/assert.hpp>
#include <set>
#include <vector>
#include <boost/concept_check.hpp>
#include <boost/concept/assert.hpp>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/buffer_concepts.hpp>
#include <boost/graph/exception.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/maximum_adjacency_search.hpp>
#include <boost/graph/named_function_params.hpp>
#include <boost/graph/one_bit_color_map.hpp>
#include <boost/graph/detail/d_ary_heap.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/utility/result_of.hpp>
#include <boost/graph/iteration_macros.hpp>
namespace boost {
namespace detail {
template < typename ParityMap, typename WeightMap, typename IndexMap >
class mas_min_cut_visitor : public boost::default_mas_visitor {
typedef one_bit_color_map <IndexMap> InternalParityMap;
typedef typename boost::property_traits<WeightMap>::value_type weight_type;
public:
template < typename Graph >
mas_min_cut_visitor(const Graph& g,
ParityMap parity,
weight_type& cutweight,
const WeightMap& weight_map,
IndexMap index_map)
: m_bestParity(parity),
m_parity(make_one_bit_color_map(num_vertices(g), index_map)),
m_bestWeight(cutweight),
m_cutweight(0),
m_visited(0),
m_weightMap(weight_map)
{
// set here since the init list sets the reference
m_bestWeight = (std::numeric_limits<weight_type>::max)();
}
template < typename Vertex, typename Graph >
void initialize_vertex(Vertex u, const Graph & g)
{
typedef typename boost::property_traits<ParityMap>::value_type parity_type;
typedef typename boost::property_traits<InternalParityMap>::value_type internal_parity_type;
put(m_parity, u, internal_parity_type(0));
put(m_bestParity, u, parity_type(0));
}
template < typename Edge, typename Graph >
void examine_edge(Edge e, const Graph & g)
{
weight_type w = get(m_weightMap, e);
// if the target of e is already marked then decrease cutweight
// otherwise, increase it
if (get(m_parity, boost::target(e, g))) {
m_cutweight -= w;
} else {
m_cutweight += w;
}
}
template < typename Vertex, typename Graph >
void finish_vertex(Vertex u, const Graph & g)
{
typedef typename boost::property_traits<InternalParityMap>::value_type internal_parity_type;
++m_visited;
put(m_parity, u, internal_parity_type(1));
if (m_cutweight < m_bestWeight && m_visited < num_vertices(g)) {
m_bestWeight = m_cutweight;
BGL_FORALL_VERTICES_T(i, g, Graph) {
put(m_bestParity,i, get(m_parity,i));
}
}
}
inline void clear() {
m_bestWeight = (std::numeric_limits<weight_type>::max)();
m_visited = 0;
m_cutweight = 0;
}
private:
ParityMap m_bestParity;
InternalParityMap m_parity;
weight_type& m_bestWeight;
weight_type m_cutweight;
unsigned m_visited;
const WeightMap& m_weightMap;
};
/**
* \brief Computes a min-cut of the input graph
*
* Computes a min-cut of the input graph using the Stoer-Wagner algorithm.
*
* \pre \p g is a connected, undirected graph
* \pre <code>pq.empty()</code>
* \param[in] g the input graph
* \param[in] weights a readable property map from each edge to its weight (a non-negative value)
* \param[out] parities a writable property map from each vertex to a bool type object for
* distinguishing the two vertex sets of the min-cut
* \param[out] assignments a read/write property map from each vertex to a \c vertex_descriptor object. This
* map serves as work space, and no particular meaning should be derived from property values
* after completion of the algorithm.
* \param[out] pq a keyed, updatable max-priority queue
* \returns the cut weight of the min-cut
* \see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.6687&rep=rep1&type=pdf
* \see http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.614&rep=rep1&type=pdf
*
* \author Daniel Trebbien
* \date 2010-09-11
*/
template <class UndirectedGraph, class WeightMap, class ParityMap, class VertexAssignmentMap, class KeyedUpdatablePriorityQueue, class IndexMap>
typename boost::property_traits<WeightMap>::value_type
stoer_wagner_min_cut(const UndirectedGraph& g, WeightMap weights, ParityMap parities, VertexAssignmentMap assignments, KeyedUpdatablePriorityQueue& pq, IndexMap index_map) {
typedef typename boost::graph_traits<UndirectedGraph>::vertex_descriptor vertex_descriptor;
typedef typename boost::property_traits<WeightMap>::value_type weight_type;
typename graph_traits<UndirectedGraph>::vertex_iterator u_iter, u_end;
weight_type bestW = (std::numeric_limits<weight_type>::max)();
weight_type bestThisTime = (std::numeric_limits<weight_type>::max)();
vertex_descriptor bestStart = boost::graph_traits<UndirectedGraph>::null_vertex();
detail::mas_min_cut_visitor<ParityMap, WeightMap, IndexMap>
vis(g, parities, bestThisTime, weights, index_map);
// for each node in the graph,
for (boost::tie(u_iter, u_end) = vertices(g); u_iter != u_end; ++u_iter) {
// run the MAS and find the min cut
vis.clear();
boost::maximum_adjacency_search(g,
boost::weight_map(weights).
visitor(vis).
root_vertex(*u_iter).
vertex_assignment_map(assignments).
max_priority_queue(pq));
if (bestThisTime < bestW) {
bestW = bestThisTime;
bestStart = *u_iter;
}
}
// Run one more time, starting from the best start location, to
// ensure the visitor has the best values.
vis.clear();
boost::maximum_adjacency_search(g,
boost::vertex_assignment_map(assignments).
weight_map(weights).
visitor(vis).
root_vertex(bestStart).
max_priority_queue(pq));
return bestW;
}
} // end `namespace detail` within `namespace boost`
template <class UndirectedGraph, class WeightMap, class ParityMap, class VertexAssignmentMap, class KeyedUpdatablePriorityQueue, class IndexMap>
typename boost::property_traits<WeightMap>::value_type
stoer_wagner_min_cut(const UndirectedGraph& g, WeightMap weights, ParityMap parities, VertexAssignmentMap assignments, KeyedUpdatablePriorityQueue& pq, IndexMap index_map) {
BOOST_CONCEPT_ASSERT((boost::IncidenceGraphConcept<UndirectedGraph>));
BOOST_CONCEPT_ASSERT((boost::VertexListGraphConcept<UndirectedGraph>));
typedef typename boost::graph_traits<UndirectedGraph>::vertex_descriptor vertex_descriptor;
typedef typename boost::graph_traits<UndirectedGraph>::vertices_size_type vertices_size_type;
typedef typename boost::graph_traits<UndirectedGraph>::edge_descriptor edge_descriptor;
BOOST_CONCEPT_ASSERT((boost::Convertible<typename boost::graph_traits<UndirectedGraph>::directed_category, boost::undirected_tag>));
BOOST_CONCEPT_ASSERT((boost::ReadablePropertyMapConcept<WeightMap, edge_descriptor>));
// typedef typename boost::property_traits<WeightMap>::value_type weight_type;
BOOST_CONCEPT_ASSERT((boost::WritablePropertyMapConcept<ParityMap, vertex_descriptor>));
// typedef typename boost::property_traits<ParityMap>::value_type parity_type;
BOOST_CONCEPT_ASSERT((boost::ReadWritePropertyMapConcept<VertexAssignmentMap, vertex_descriptor>));
BOOST_CONCEPT_ASSERT((boost::Convertible<vertex_descriptor, typename boost::property_traits<VertexAssignmentMap>::value_type>));
BOOST_CONCEPT_ASSERT((boost::KeyedUpdatableQueueConcept<KeyedUpdatablePriorityQueue>));
vertices_size_type n = num_vertices(g);
if (n < 2)
throw boost::bad_graph("the input graph must have at least two vertices.");
else if (!pq.empty())
throw std::invalid_argument("the max-priority queue must be empty initially.");
return detail::stoer_wagner_min_cut(g, weights,
parities, assignments, pq, index_map);
}
namespace graph {
namespace detail {
template <class UndirectedGraph, class WeightMap>
struct stoer_wagner_min_cut_impl {
typedef typename boost::property_traits<WeightMap>::value_type result_type;
template <typename ArgPack>
result_type operator() (const UndirectedGraph& g, WeightMap weights, const ArgPack& arg_pack) const {
using namespace boost::graph::keywords;
typedef typename boost::graph_traits<UndirectedGraph>::vertex_descriptor vertex_descriptor;
typedef typename boost::property_traits<WeightMap>::value_type weight_type;
typedef boost::detail::make_priority_queue_from_arg_pack_gen<boost::graph::keywords::tag::max_priority_queue, weight_type, vertex_descriptor, std::greater<weight_type> > gen_type;
gen_type gen(choose_param(get_param(arg_pack, boost::distance_zero_t()), weight_type(0)));
typename boost::result_of<gen_type(const UndirectedGraph&, const ArgPack&)>::type pq = gen(g, arg_pack);
return boost::stoer_wagner_min_cut(g,
weights,
arg_pack [_parity_map | boost::dummy_property_map()],
boost::detail::make_property_map_from_arg_pack_gen<tag::vertex_assignment_map, vertex_descriptor>(vertex_descriptor())(g, arg_pack),
pq,
boost::detail::override_const_property(arg_pack, _vertex_index_map, g, vertex_index)
);
}
};
}
BOOST_GRAPH_MAKE_FORWARDING_FUNCTION(stoer_wagner_min_cut,2,4)
}
// Named parameter interface
BOOST_GRAPH_MAKE_OLD_STYLE_PARAMETER_FUNCTION(stoer_wagner_min_cut, 2)
namespace graph {
// version without IndexMap kept for backwards compatibility
// (but requires vertex_index_t to be defined in the graph)
// Place after the macro to avoid compilation errors
template <class UndirectedGraph, class WeightMap, class ParityMap, class VertexAssignmentMap, class KeyedUpdatablePriorityQueue>
typename boost::property_traits<WeightMap>::value_type
stoer_wagner_min_cut(const UndirectedGraph& g, WeightMap weights, ParityMap parities, VertexAssignmentMap assignments, KeyedUpdatablePriorityQueue& pq) {
return stoer_wagner_min_cut(g, weights,
parities, assignments, pq,
get(vertex_index, g));
}
} // end `namespace graph`
} // end `namespace boost`
#include <boost/graph/iteration_macros_undef.hpp>
#endif // !BOOST_GRAPH_STOER_WAGNER_MIN_CUT_HPP