boost/asio/basic_seq_packet_socket.hpp
//
// basic_seq_packet_socket.hpp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2018 Christopher M. Kohlhoff (chris at kohlhoff dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_BASIC_SEQ_PACKET_SOCKET_HPP
#define BOOST_ASIO_BASIC_SEQ_PACKET_SOCKET_HPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/config.hpp>
#include <cstddef>
#include <boost/asio/basic_socket.hpp>
#include <boost/asio/detail/handler_type_requirements.hpp>
#include <boost/asio/detail/throw_error.hpp>
#include <boost/asio/error.hpp>
#if defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
# include <boost/asio/seq_packet_socket_service.hpp>
#endif // defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
#include <boost/asio/detail/push_options.hpp>
namespace boost {
namespace asio {
/// Provides sequenced packet socket functionality.
/**
* The basic_seq_packet_socket class template provides asynchronous and blocking
* sequenced packet socket functionality.
*
* @par Thread Safety
* @e Distinct @e objects: Safe.@n
* @e Shared @e objects: Unsafe.
*/
template <typename Protocol
BOOST_ASIO_SVC_TPARAM_DEF1(= seq_packet_socket_service<Protocol>)>
class basic_seq_packet_socket
: public basic_socket<Protocol BOOST_ASIO_SVC_TARG>
{
public:
/// The native representation of a socket.
#if defined(GENERATING_DOCUMENTATION)
typedef implementation_defined native_handle_type;
#else
typedef typename basic_socket<
Protocol BOOST_ASIO_SVC_TARG>::native_handle_type native_handle_type;
#endif
/// The protocol type.
typedef Protocol protocol_type;
/// The endpoint type.
typedef typename Protocol::endpoint endpoint_type;
/// Construct a basic_seq_packet_socket without opening it.
/**
* This constructor creates a sequenced packet socket without opening it. The
* socket needs to be opened and then connected or accepted before data can
* be sent or received on it.
*
* @param io_context The io_context object that the sequenced packet socket
* will use to dispatch handlers for any asynchronous operations performed on
* the socket.
*/
explicit basic_seq_packet_socket(boost::asio::io_context& io_context)
: basic_socket<Protocol BOOST_ASIO_SVC_TARG>(io_context)
{
}
/// Construct and open a basic_seq_packet_socket.
/**
* This constructor creates and opens a sequenced_packet socket. The socket
* needs to be connected or accepted before data can be sent or received on
* it.
*
* @param io_context The io_context object that the sequenced packet socket
* will use to dispatch handlers for any asynchronous operations performed on
* the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_seq_packet_socket(boost::asio::io_context& io_context,
const protocol_type& protocol)
: basic_socket<Protocol BOOST_ASIO_SVC_TARG>(io_context, protocol)
{
}
/// Construct a basic_seq_packet_socket, opening it and binding it to the
/// given local endpoint.
/**
* This constructor creates a sequenced packet socket and automatically opens
* it bound to the specified endpoint on the local machine. The protocol used
* is the protocol associated with the given endpoint.
*
* @param io_context The io_context object that the sequenced packet socket
* will use to dispatch handlers for any asynchronous operations performed on
* the socket.
*
* @param endpoint An endpoint on the local machine to which the sequenced
* packet socket will be bound.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_seq_packet_socket(boost::asio::io_context& io_context,
const endpoint_type& endpoint)
: basic_socket<Protocol BOOST_ASIO_SVC_TARG>(io_context, endpoint)
{
}
/// Construct a basic_seq_packet_socket on an existing native socket.
/**
* This constructor creates a sequenced packet socket object to hold an
* existing native socket.
*
* @param io_context The io_context object that the sequenced packet socket
* will use to dispatch handlers for any asynchronous operations performed on
* the socket.
*
* @param protocol An object specifying protocol parameters to be used.
*
* @param native_socket The new underlying socket implementation.
*
* @throws boost::system::system_error Thrown on failure.
*/
basic_seq_packet_socket(boost::asio::io_context& io_context,
const protocol_type& protocol, const native_handle_type& native_socket)
: basic_socket<Protocol BOOST_ASIO_SVC_TARG>(
io_context, protocol, native_socket)
{
}
#if defined(BOOST_ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Move-construct a basic_seq_packet_socket from another.
/**
* This constructor moves a sequenced packet socket from one object to
* another.
*
* @param other The other basic_seq_packet_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_seq_packet_socket(io_context&) constructor.
*/
basic_seq_packet_socket(basic_seq_packet_socket&& other)
: basic_socket<Protocol BOOST_ASIO_SVC_TARG>(std::move(other))
{
}
/// Move-assign a basic_seq_packet_socket from another.
/**
* This assignment operator moves a sequenced packet socket from one object to
* another.
*
* @param other The other basic_seq_packet_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_seq_packet_socket(io_context&) constructor.
*/
basic_seq_packet_socket& operator=(basic_seq_packet_socket&& other)
{
basic_socket<Protocol BOOST_ASIO_SVC_TARG>::operator=(std::move(other));
return *this;
}
/// Move-construct a basic_seq_packet_socket from a socket of another protocol
/// type.
/**
* This constructor moves a sequenced packet socket from one object to
* another.
*
* @param other The other basic_seq_packet_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_seq_packet_socket(io_context&) constructor.
*/
template <typename Protocol1 BOOST_ASIO_SVC_TPARAM1>
basic_seq_packet_socket(
basic_seq_packet_socket<Protocol1 BOOST_ASIO_SVC_TARG1>&& other,
typename enable_if<is_convertible<Protocol1, Protocol>::value>::type* = 0)
: basic_socket<Protocol BOOST_ASIO_SVC_TARG>(std::move(other))
{
}
/// Move-assign a basic_seq_packet_socket from a socket of another protocol
/// type.
/**
* This assignment operator moves a sequenced packet socket from one object to
* another.
*
* @param other The other basic_seq_packet_socket object from which the move
* will occur.
*
* @note Following the move, the moved-from object is in the same state as if
* constructed using the @c basic_seq_packet_socket(io_context&) constructor.
*/
template <typename Protocol1 BOOST_ASIO_SVC_TPARAM1>
typename enable_if<is_convertible<Protocol1, Protocol>::value,
basic_seq_packet_socket>::type& operator=(
basic_seq_packet_socket<Protocol1 BOOST_ASIO_SVC_TARG1>&& other)
{
basic_socket<Protocol BOOST_ASIO_SVC_TARG>::operator=(std::move(other));
return *this;
}
#endif // defined(BOOST_ASIO_HAS_MOVE) || defined(GENERATING_DOCUMENTATION)
/// Destroys the socket.
/**
* This function destroys the socket, cancelling any outstanding asynchronous
* operations associated with the socket as if by calling @c cancel.
*/
~basic_seq_packet_socket()
{
}
/// Send some data on the socket.
/**
* This function is used to send data on the sequenced packet socket. The
* function call will block until the data has been sent successfully, or an
* until error occurs.
*
* @param buffers One or more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @returns The number of bytes sent.
*
* @throws boost::system::system_error Thrown on failure.
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* socket.send(boost::asio::buffer(data, size), 0);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags)
{
boost::system::error_code ec;
std::size_t s = this->get_service().send(
this->get_implementation(), buffers, flags, ec);
boost::asio::detail::throw_error(ec, "send");
return s;
}
/// Send some data on the socket.
/**
* This function is used to send data on the sequenced packet socket. The
* function call will block the data has been sent successfully, or an until
* error occurs.
*
* @param buffers One or more data buffers to be sent on the socket.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes sent. Returns 0 if an error occurred.
*
* @note The send operation may not transmit all of the data to the peer.
* Consider using the @ref write function if you need to ensure that all data
* is written before the blocking operation completes.
*/
template <typename ConstBufferSequence>
std::size_t send(const ConstBufferSequence& buffers,
socket_base::message_flags flags, boost::system::error_code& ec)
{
return this->get_service().send(
this->get_implementation(), buffers, flags, ec);
}
/// Start an asynchronous send.
/**
* This function is used to asynchronously send data on the sequenced packet
* socket. The function call always returns immediately.
*
* @param buffers One or more data buffers to be sent on the socket. Although
* the buffers object may be copied as necessary, ownership of the underlying
* memory blocks is retained by the caller, which must guarantee that they
* remain valid until the handler is called.
*
* @param flags Flags specifying how the send call is to be made.
*
* @param handler The handler to be called when the send operation completes.
* Copies will be made of the handler as required. The function signature of
* the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes sent.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_context::post().
*
* @par Example
* To send a single data buffer use the @ref buffer function as follows:
* @code
* socket.async_send(boost::asio::buffer(data, size), 0, handler);
* @endcode
* See the @ref buffer documentation for information on sending multiple
* buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename ConstBufferSequence, typename WriteHandler>
BOOST_ASIO_INITFN_RESULT_TYPE(WriteHandler,
void (boost::system::error_code, std::size_t))
async_send(const ConstBufferSequence& buffers,
socket_base::message_flags flags,
BOOST_ASIO_MOVE_ARG(WriteHandler) handler)
{
// If you get an error on the following line it means that your handler does
// not meet the documented type requirements for a WriteHandler.
BOOST_ASIO_WRITE_HANDLER_CHECK(WriteHandler, handler) type_check;
#if defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
return this->get_service().async_send(this->get_implementation(),
buffers, flags, BOOST_ASIO_MOVE_CAST(WriteHandler)(handler));
#else // defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
async_completion<WriteHandler,
void (boost::system::error_code, std::size_t)> init(handler);
this->get_service().async_send(this->get_implementation(),
buffers, flags, init.completion_handler);
return init.result.get();
#endif // defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
}
/// Receive some data on the socket.
/**
* This function is used to receive data on the sequenced packet socket. The
* function call will block until data has been received successfully, or
* until an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param out_flags After the receive call completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure. An error code of
* boost::asio::error::eof indicates that the connection was closed by the
* peer.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.receive(boost::asio::buffer(data, size), out_flags);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags& out_flags)
{
boost::system::error_code ec;
#if defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
std::size_t s = this->get_service().receive(
this->get_implementation(), buffers, 0, out_flags, ec);
#else // defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
std::size_t s = this->get_service().receive_with_flags(
this->get_implementation(), buffers, 0, out_flags, ec);
#endif // defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
boost::asio::detail::throw_error(ec, "receive");
return s;
}
/// Receive some data on the socket.
/**
* This function is used to receive data on the sequenced packet socket. The
* function call will block until data has been received successfully, or
* until an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param in_flags Flags specifying how the receive call is to be made.
*
* @param out_flags After the receive call completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record.
*
* @returns The number of bytes received.
*
* @throws boost::system::system_error Thrown on failure. An error code of
* boost::asio::error::eof indicates that the connection was closed by the
* peer.
*
* @note The receive operation may not receive all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that the
* requested amount of data is read before the blocking operation completes.
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.receive(boost::asio::buffer(data, size), 0, out_flags);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags in_flags,
socket_base::message_flags& out_flags)
{
boost::system::error_code ec;
#if defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
std::size_t s = this->get_service().receive(
this->get_implementation(), buffers, in_flags, out_flags, ec);
#else // defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
std::size_t s = this->get_service().receive_with_flags(
this->get_implementation(), buffers, in_flags, out_flags, ec);
#endif // defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
boost::asio::detail::throw_error(ec, "receive");
return s;
}
/// Receive some data on a connected socket.
/**
* This function is used to receive data on the sequenced packet socket. The
* function call will block until data has been received successfully, or
* until an error occurs.
*
* @param buffers One or more buffers into which the data will be received.
*
* @param in_flags Flags specifying how the receive call is to be made.
*
* @param out_flags After the receive call completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record.
*
* @param ec Set to indicate what error occurred, if any.
*
* @returns The number of bytes received. Returns 0 if an error occurred.
*
* @note The receive operation may not receive all of the requested number of
* bytes. Consider using the @ref read function if you need to ensure that the
* requested amount of data is read before the blocking operation completes.
*/
template <typename MutableBufferSequence>
std::size_t receive(const MutableBufferSequence& buffers,
socket_base::message_flags in_flags,
socket_base::message_flags& out_flags, boost::system::error_code& ec)
{
#if defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
return this->get_service().receive(this->get_implementation(),
buffers, in_flags, out_flags, ec);
#else // defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
return this->get_service().receive_with_flags(this->get_implementation(),
buffers, in_flags, out_flags, ec);
#endif // defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive data from the sequenced
* packet socket. The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param out_flags Once the asynchronous operation completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record. The caller must guarantee that the referenced
* variable remains valid until the handler is called.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_context::post().
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.async_receive(boost::asio::buffer(data, size), out_flags, handler);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence, typename ReadHandler>
BOOST_ASIO_INITFN_RESULT_TYPE(ReadHandler,
void (boost::system::error_code, std::size_t))
async_receive(const MutableBufferSequence& buffers,
socket_base::message_flags& out_flags,
BOOST_ASIO_MOVE_ARG(ReadHandler) handler)
{
// If you get an error on the following line it means that your handler does
// not meet the documented type requirements for a ReadHandler.
BOOST_ASIO_READ_HANDLER_CHECK(ReadHandler, handler) type_check;
#if defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
return this->get_service().async_receive(
this->get_implementation(), buffers, 0, out_flags,
BOOST_ASIO_MOVE_CAST(ReadHandler)(handler));
#else // defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
async_completion<ReadHandler,
void (boost::system::error_code, std::size_t)> init(handler);
this->get_service().async_receive_with_flags(
this->get_implementation(), buffers, 0, out_flags,
init.completion_handler);
return init.result.get();
#endif // defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
}
/// Start an asynchronous receive.
/**
* This function is used to asynchronously receive data from the sequenced
* data socket. The function call always returns immediately.
*
* @param buffers One or more buffers into which the data will be received.
* Although the buffers object may be copied as necessary, ownership of the
* underlying memory blocks is retained by the caller, which must guarantee
* that they remain valid until the handler is called.
*
* @param in_flags Flags specifying how the receive call is to be made.
*
* @param out_flags Once the asynchronous operation completes, contains flags
* associated with the received data. For example, if the
* socket_base::message_end_of_record bit is set then the received data marks
* the end of a record. The caller must guarantee that the referenced
* variable remains valid until the handler is called.
*
* @param handler The handler to be called when the receive operation
* completes. Copies will be made of the handler as required. The function
* signature of the handler must be:
* @code void handler(
* const boost::system::error_code& error, // Result of operation.
* std::size_t bytes_transferred // Number of bytes received.
* ); @endcode
* Regardless of whether the asynchronous operation completes immediately or
* not, the handler will not be invoked from within this function. Invocation
* of the handler will be performed in a manner equivalent to using
* boost::asio::io_context::post().
*
* @par Example
* To receive into a single data buffer use the @ref buffer function as
* follows:
* @code
* socket.async_receive(
* boost::asio::buffer(data, size),
* 0, out_flags, handler);
* @endcode
* See the @ref buffer documentation for information on receiving into
* multiple buffers in one go, and how to use it with arrays, boost::array or
* std::vector.
*/
template <typename MutableBufferSequence, typename ReadHandler>
BOOST_ASIO_INITFN_RESULT_TYPE(ReadHandler,
void (boost::system::error_code, std::size_t))
async_receive(const MutableBufferSequence& buffers,
socket_base::message_flags in_flags,
socket_base::message_flags& out_flags,
BOOST_ASIO_MOVE_ARG(ReadHandler) handler)
{
// If you get an error on the following line it means that your handler does
// not meet the documented type requirements for a ReadHandler.
BOOST_ASIO_READ_HANDLER_CHECK(ReadHandler, handler) type_check;
#if defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
return this->get_service().async_receive(
this->get_implementation(), buffers, in_flags, out_flags,
BOOST_ASIO_MOVE_CAST(ReadHandler)(handler));
#else // defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
async_completion<ReadHandler,
void (boost::system::error_code, std::size_t)> init(handler);
this->get_service().async_receive_with_flags(
this->get_implementation(), buffers, in_flags, out_flags,
init.completion_handler);
return init.result.get();
#endif // defined(BOOST_ASIO_ENABLE_OLD_SERVICES)
}
};
} // namespace asio
} // namespace boost
#include <boost/asio/detail/pop_options.hpp>
#endif // BOOST_ASIO_BASIC_SEQ_PACKET_SOCKET_HPP