boost/accumulators/statistics/weighted_density.hpp
///////////////////////////////////////////////////////////////////////////////
// weighted_density.hpp
//
// Copyright 2006 Daniel Egloff, Olivier Gygi. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_ACCUMULATORS_STATISTICS_WEIGHTED_DENSITY_HPP_DE_01_01_2006
#define BOOST_ACCUMULATORS_STATISTICS_WEIGHTED_DENSITY_HPP_DE_01_01_2006
#include <vector>
#include <limits>
#include <functional>
#include <boost/range.hpp>
#include <boost/parameter/keyword.hpp>
#include <boost/mpl/placeholders.hpp>
#include <boost/accumulators/framework/accumulator_base.hpp>
#include <boost/accumulators/framework/extractor.hpp>
#include <boost/accumulators/numeric/functional.hpp>
#include <boost/accumulators/framework/parameters/sample.hpp>
#include <boost/accumulators/statistics_fwd.hpp>
#include <boost/accumulators/statistics/sum.hpp>
#include <boost/accumulators/statistics/max.hpp>
#include <boost/accumulators/statistics/min.hpp>
#include <boost/accumulators/statistics/density.hpp> // for named parameters density_cache_size and density_num_bins
namespace boost { namespace accumulators
{
namespace impl
{
///////////////////////////////////////////////////////////////////////////////
// weighted_density_impl
// density histogram for weighted samples
/**
@brief Histogram density estimator for weighted samples
The histogram density estimator returns a histogram of the sample distribution. The positions and sizes of the bins
are determined using a specifiable number of cached samples (cache_size). The range between the minimum and the
maximum of the cached samples is subdivided into a specifiable number of bins (num_bins) of same size. Additionally,
an under- and an overflow bin is added to capture future under- and overflow samples. Once the bins are determined,
the cached samples and all subsequent samples are added to the correct bins. At the end, a range of std::pair is
returned, where each pair contains the position of the bin (lower bound) and the sum of the weights (normalized with the
sum of all weights).
@param density_cache_size Number of first samples used to determine min and max.
@param density_num_bins Number of bins (two additional bins collect under- and overflow samples).
*/
template<typename Sample, typename Weight>
struct weighted_density_impl
: accumulator_base
{
typedef typename numeric::functional::fdiv<Weight, std::size_t>::result_type float_type;
typedef std::vector<std::pair<float_type, float_type> > histogram_type;
typedef std::vector<float_type> array_type;
// for boost::result_of
typedef iterator_range<typename histogram_type::iterator> result_type;
template<typename Args>
weighted_density_impl(Args const &args)
: cache_size(args[density_cache_size])
, cache(cache_size)
, num_bins(args[density_num_bins])
, samples_in_bin(num_bins + 2, 0.)
, bin_positions(num_bins + 2)
, histogram(
num_bins + 2
, std::make_pair(
numeric::fdiv(args[sample | Sample()],(std::size_t)1)
, numeric::fdiv(args[sample | Sample()],(std::size_t)1)
)
)
, is_dirty(true)
{
}
template<typename Args>
void operator ()(Args const &args)
{
this->is_dirty = true;
std::size_t cnt = count(args);
// Fill up cache with cache_size first samples
if (cnt <= this->cache_size)
{
this->cache[cnt - 1] = std::make_pair(args[sample], args[weight]);
}
// Once cache_size samples have been accumulated, create num_bins bins of same size between
// the minimum and maximum of the cached samples as well as an under- and an overflow bin.
// Store their lower bounds (bin_positions) and fill the bins with the cached samples (samples_in_bin).
if (cnt == this->cache_size)
{
float_type minimum = numeric::fdiv((min)(args),(std::size_t)1);
float_type maximum = numeric::fdiv((max)(args),(std::size_t)1);
float_type bin_size = numeric::fdiv(maximum - minimum, this->num_bins);
// determine bin positions (their lower bounds)
for (std::size_t i = 0; i < this->num_bins + 2; ++i)
{
this->bin_positions[i] = minimum + (i - 1.) * bin_size;
}
for (typename histogram_type::const_iterator iter = this->cache.begin(); iter != this->cache.end(); ++iter)
{
if (iter->first < this->bin_positions[1])
{
this->samples_in_bin[0] += iter->second;
}
else if (iter->first >= this->bin_positions[this->num_bins + 1])
{
this->samples_in_bin[this->num_bins + 1] += iter->second;
}
else
{
typename array_type::iterator it = std::upper_bound(
this->bin_positions.begin()
, this->bin_positions.end()
, iter->first
);
std::size_t d = std::distance(this->bin_positions.begin(), it);
this->samples_in_bin[d - 1] += iter->second;
}
}
}
// Add each subsequent sample to the correct bin
else if (cnt > this->cache_size)
{
if (args[sample] < this->bin_positions[1])
{
this->samples_in_bin[0] += args[weight];
}
else if (args[sample] >= this->bin_positions[this->num_bins + 1])
{
this->samples_in_bin[this->num_bins + 1] += args[weight];
}
else
{
typename array_type::iterator it = std::upper_bound(
this->bin_positions.begin()
, this->bin_positions.end()
, args[sample]
);
std::size_t d = std::distance(this->bin_positions.begin(), it);
this->samples_in_bin[d - 1] += args[weight];
}
}
}
template<typename Args>
result_type result(Args const &args) const
{
if (this->is_dirty)
{
this->is_dirty = false;
// creates a vector of std::pair where each pair i holds
// the values bin_positions[i] (x-axis of histogram) and
// samples_in_bin[i] / cnt (y-axis of histogram).
for (std::size_t i = 0; i < this->num_bins + 2; ++i)
{
this->histogram[i] = std::make_pair(this->bin_positions[i], numeric::fdiv(this->samples_in_bin[i], sum_of_weights(args)));
}
}
// returns a range of pairs
return make_iterator_range(this->histogram);
}
private:
std::size_t cache_size; // number of cached samples
histogram_type cache; // cache to store the first cache_size samples with their weights as std::pair
std::size_t num_bins; // number of bins
array_type samples_in_bin; // number of samples in each bin
array_type bin_positions; // lower bounds of bins
mutable histogram_type histogram; // histogram
mutable bool is_dirty;
};
} // namespace impl
///////////////////////////////////////////////////////////////////////////////
// tag::weighted_density
//
namespace tag
{
struct weighted_density
: depends_on<count, sum_of_weights, min, max>
, density_cache_size
, density_num_bins
{
/// INTERNAL ONLY
///
typedef accumulators::impl::weighted_density_impl<mpl::_1, mpl::_2> impl;
#ifdef BOOST_ACCUMULATORS_DOXYGEN_INVOKED
static boost::parameter::keyword<density_cache_size> const cache_size;
static boost::parameter::keyword<density_num_bins> const num_bins;
#endif
};
}
///////////////////////////////////////////////////////////////////////////////
// extract::weighted_density
//
namespace extract
{
extractor<tag::density> const weighted_density = {};
BOOST_ACCUMULATORS_IGNORE_GLOBAL(weighted_density)
}
using extract::weighted_density;
}} // namespace boost::accumulators
#endif