boost/container/deque.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2015. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_DEQUE_HPP
#define BOOST_CONTAINER_DEQUE_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
// container
#include <boost/container/allocator_traits.hpp>
#include <boost/container/container_fwd.hpp>
#include <boost/container/new_allocator.hpp> //new_allocator
#include <boost/container/throw_exception.hpp>
// container/detail
#include <boost/container/detail/advanced_insert_int.hpp>
#include <boost/container/detail/algorithm.hpp> //algo_equal(), algo_lexicographical_compare
#include <boost/container/detail/alloc_helpers.hpp>
#include <boost/container/detail/copy_move_algo.hpp>
#include <boost/container/detail/iterator.hpp>
#include <boost/move/detail/iterator_to_raw_pointer.hpp>
#include <boost/container/detail/iterators.hpp>
#include <boost/container/detail/min_max.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/move/detail/to_raw_pointer.hpp>
#include <boost/container/detail/type_traits.hpp>
// move
#include <boost/move/adl_move_swap.hpp>
#include <boost/move/iterator.hpp>
#include <boost/move/traits.hpp>
#include <boost/move/utility_core.hpp>
// move/detail
#if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#include <boost/move/detail/fwd_macros.hpp>
#endif
#include <boost/move/detail/move_helpers.hpp>
// other
#include <boost/assert.hpp>
#include <boost/core/no_exceptions_support.hpp>
// std
#include <cstddef>
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
#include <initializer_list>
#endif
namespace boost {
namespace container {
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class Allocator>
class deque;
template <class T>
struct deque_value_traits
{
typedef T value_type;
static const bool trivial_dctr = container_detail::is_trivially_destructible<value_type>::value;
static const bool trivial_dctr_after_move = ::boost::has_trivial_destructor_after_move<value_type>::value;
};
// Note: this function is simply a kludge to work around several compilers'
// bugs in handling constant expressions.
template<class T>
struct deque_buf_size
{
static const std::size_t min_size = 512u;
static const std::size_t sizeof_t = sizeof(T);
static const std::size_t value = sizeof_t < min_size ? (min_size/sizeof_t) : std::size_t(1);
};
namespace container_detail {
// Class invariants:
// For any nonsingular iterator i:
// i.node is the address of an element in the map array. The
// contents of i.node is a pointer to the beginning of a node.
// i.first == //(i.node)
// i.last == i.first + node_size
// i.cur is a pointer in the range [i.first, i.last). NOTE:
// the implication of this is that i.cur is always a dereferenceable
// pointer, even if i is a past-the-end iterator.
// Start and Finish are always nonsingular iterators. NOTE: this means
// that an empty deque must have one node, and that a deque
// with N elements, where N is the buffer size, must have two nodes.
// For every node other than start.node and finish.node, every element
// in the node is an initialized object. If start.node == finish.node,
// then [start.cur, finish.cur) are initialized objects, and
// the elements outside that range are uninitialized storage. Otherwise,
// [start.cur, start.last) and [finish.first, finish.cur) are initialized
// objects, and [start.first, start.cur) and [finish.cur, finish.last)
// are uninitialized storage.
// [map, map + map_size) is a valid, non-empty range.
// [start.node, finish.node] is a valid range contained within
// [map, map + map_size).
// A pointer in the range [map, map + map_size) points to an allocated node
// if and only if the pointer is in the range [start.node, finish.node].
template<class Pointer, bool IsConst>
class deque_iterator
{
public:
typedef std::random_access_iterator_tag iterator_category;
typedef typename boost::intrusive::pointer_traits<Pointer>::element_type value_type;
typedef typename boost::intrusive::pointer_traits<Pointer>::difference_type difference_type;
typedef typename if_c
< IsConst
, typename boost::intrusive::pointer_traits<Pointer>::template
rebind_pointer<const value_type>::type
, Pointer
>::type pointer;
typedef typename if_c
< IsConst
, const value_type&
, value_type&
>::type reference;
static std::size_t s_buffer_size()
{ return deque_buf_size<value_type>::value; }
typedef Pointer val_alloc_ptr;
typedef typename boost::intrusive::pointer_traits<Pointer>::
template rebind_pointer<Pointer>::type index_pointer;
Pointer m_cur;
Pointer m_first;
Pointer m_last;
index_pointer m_node;
public:
Pointer get_cur() const { return m_cur; }
Pointer get_first() const { return m_first; }
Pointer get_last() const { return m_last; }
index_pointer get_node() const { return m_node; }
deque_iterator(val_alloc_ptr x, index_pointer y) BOOST_NOEXCEPT_OR_NOTHROW
: m_cur(x), m_first(*y), m_last(*y + s_buffer_size()), m_node(y)
{}
deque_iterator() BOOST_NOEXCEPT_OR_NOTHROW
: m_cur(), m_first(), m_last(), m_node() //Value initialization to achieve "null iterators" (N3644)
{}
deque_iterator(deque_iterator<Pointer, false> const& x) BOOST_NOEXCEPT_OR_NOTHROW
: m_cur(x.get_cur()), m_first(x.get_first()), m_last(x.get_last()), m_node(x.get_node())
{}
deque_iterator(Pointer cur, Pointer first, Pointer last, index_pointer node) BOOST_NOEXCEPT_OR_NOTHROW
: m_cur(cur), m_first(first), m_last(last), m_node(node)
{}
deque_iterator<Pointer, false> unconst() const BOOST_NOEXCEPT_OR_NOTHROW
{
return deque_iterator<Pointer, false>(this->get_cur(), this->get_first(), this->get_last(), this->get_node());
}
reference operator*() const BOOST_NOEXCEPT_OR_NOTHROW
{ return *this->m_cur; }
pointer operator->() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->m_cur; }
difference_type operator-(const deque_iterator& x) const BOOST_NOEXCEPT_OR_NOTHROW
{
if(!this->m_cur && !x.m_cur){
return 0;
}
return difference_type(this->s_buffer_size()) * (this->m_node - x.m_node - 1) +
(this->m_cur - this->m_first) + (x.m_last - x.m_cur);
}
deque_iterator& operator++() BOOST_NOEXCEPT_OR_NOTHROW
{
++this->m_cur;
if (this->m_cur == this->m_last) {
this->priv_set_node(this->m_node + 1);
this->m_cur = this->m_first;
}
return *this;
}
deque_iterator operator++(int) BOOST_NOEXCEPT_OR_NOTHROW
{
deque_iterator tmp(*this);
++*this;
return tmp;
}
deque_iterator& operator--() BOOST_NOEXCEPT_OR_NOTHROW
{
if (this->m_cur == this->m_first) {
this->priv_set_node(this->m_node - 1);
this->m_cur = this->m_last;
}
--this->m_cur;
return *this;
}
deque_iterator operator--(int) BOOST_NOEXCEPT_OR_NOTHROW
{
deque_iterator tmp(*this);
--*this;
return tmp;
}
deque_iterator& operator+=(difference_type n) BOOST_NOEXCEPT_OR_NOTHROW
{
difference_type offset = n + (this->m_cur - this->m_first);
if (offset >= 0 && offset < difference_type(this->s_buffer_size()))
this->m_cur += n;
else {
difference_type node_offset =
offset > 0 ? offset / difference_type(this->s_buffer_size())
: -difference_type((-offset - 1) / this->s_buffer_size()) - 1;
this->priv_set_node(this->m_node + node_offset);
this->m_cur = this->m_first +
(offset - node_offset * difference_type(this->s_buffer_size()));
}
return *this;
}
deque_iterator operator+(difference_type n) const BOOST_NOEXCEPT_OR_NOTHROW
{ deque_iterator tmp(*this); return tmp += n; }
deque_iterator& operator-=(difference_type n) BOOST_NOEXCEPT_OR_NOTHROW
{ return *this += -n; }
deque_iterator operator-(difference_type n) const BOOST_NOEXCEPT_OR_NOTHROW
{ deque_iterator tmp(*this); return tmp -= n; }
reference operator[](difference_type n) const BOOST_NOEXCEPT_OR_NOTHROW
{ return *(*this + n); }
friend bool operator==(const deque_iterator& l, const deque_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
{ return l.m_cur == r.m_cur; }
friend bool operator!=(const deque_iterator& l, const deque_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
{ return l.m_cur != r.m_cur; }
friend bool operator<(const deque_iterator& l, const deque_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
{ return (l.m_node == r.m_node) ? (l.m_cur < r.m_cur) : (l.m_node < r.m_node); }
friend bool operator>(const deque_iterator& l, const deque_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
{ return r < l; }
friend bool operator<=(const deque_iterator& l, const deque_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
{ return !(r < l); }
friend bool operator>=(const deque_iterator& l, const deque_iterator& r) BOOST_NOEXCEPT_OR_NOTHROW
{ return !(l < r); }
void priv_set_node(index_pointer new_node) BOOST_NOEXCEPT_OR_NOTHROW
{
this->m_node = new_node;
this->m_first = *new_node;
this->m_last = this->m_first + this->s_buffer_size();
}
friend deque_iterator operator+(difference_type n, deque_iterator x) BOOST_NOEXCEPT_OR_NOTHROW
{ return x += n; }
};
} //namespace container_detail {
// Deque base class. It has two purposes. First, its constructor
// and destructor allocate (but don't initialize) storage. This makes
// exception safety easier.
template <class Allocator>
class deque_base
{
BOOST_COPYABLE_AND_MOVABLE(deque_base)
public:
typedef allocator_traits<Allocator> val_alloc_traits_type;
typedef typename val_alloc_traits_type::value_type val_alloc_val;
typedef typename val_alloc_traits_type::pointer val_alloc_ptr;
typedef typename val_alloc_traits_type::const_pointer val_alloc_cptr;
typedef typename val_alloc_traits_type::reference val_alloc_ref;
typedef typename val_alloc_traits_type::const_reference val_alloc_cref;
typedef typename val_alloc_traits_type::difference_type val_alloc_diff;
typedef typename val_alloc_traits_type::size_type val_alloc_size;
typedef typename val_alloc_traits_type::template
portable_rebind_alloc<val_alloc_ptr>::type ptr_alloc_t;
typedef allocator_traits<ptr_alloc_t> ptr_alloc_traits_type;
typedef typename ptr_alloc_traits_type::value_type ptr_alloc_val;
typedef typename ptr_alloc_traits_type::pointer ptr_alloc_ptr;
typedef typename ptr_alloc_traits_type::const_pointer ptr_alloc_cptr;
typedef typename ptr_alloc_traits_type::reference ptr_alloc_ref;
typedef typename ptr_alloc_traits_type::const_reference ptr_alloc_cref;
typedef Allocator allocator_type;
typedef allocator_type stored_allocator_type;
typedef val_alloc_size size_type;
protected:
typedef deque_value_traits<val_alloc_val> traits_t;
typedef ptr_alloc_t map_allocator_type;
static size_type s_buffer_size() BOOST_NOEXCEPT_OR_NOTHROW
{ return deque_buf_size<val_alloc_val>::value; }
val_alloc_ptr priv_allocate_node()
{ return this->alloc().allocate(s_buffer_size()); }
void priv_deallocate_node(val_alloc_ptr p) BOOST_NOEXCEPT_OR_NOTHROW
{ this->alloc().deallocate(p, s_buffer_size()); }
ptr_alloc_ptr priv_allocate_map(size_type n)
{ return this->ptr_alloc().allocate(n); }
void priv_deallocate_map(ptr_alloc_ptr p, size_type n) BOOST_NOEXCEPT_OR_NOTHROW
{ this->ptr_alloc().deallocate(p, n); }
typedef container_detail::deque_iterator<val_alloc_ptr, false> iterator;
typedef container_detail::deque_iterator<val_alloc_ptr, true > const_iterator;
deque_base(size_type num_elements, const allocator_type& a)
: members_(a)
{ this->priv_initialize_map(num_elements); }
explicit deque_base(const allocator_type& a)
: members_(a)
{}
deque_base()
: members_()
{}
explicit deque_base(BOOST_RV_REF(deque_base) x)
: members_( boost::move(x.ptr_alloc())
, boost::move(x.alloc()) )
{}
~deque_base()
{
if (this->members_.m_map) {
this->priv_destroy_nodes(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1);
this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size);
}
}
private:
deque_base(const deque_base&);
protected:
void swap_members(deque_base &x) BOOST_NOEXCEPT_OR_NOTHROW
{
::boost::adl_move_swap(this->members_.m_start, x.members_.m_start);
::boost::adl_move_swap(this->members_.m_finish, x.members_.m_finish);
::boost::adl_move_swap(this->members_.m_map, x.members_.m_map);
::boost::adl_move_swap(this->members_.m_map_size, x.members_.m_map_size);
}
void priv_initialize_map(size_type num_elements)
{
// if(num_elements){
size_type num_nodes = num_elements / s_buffer_size() + 1;
this->members_.m_map_size = container_detail::max_value((size_type) InitialMapSize, num_nodes + 2);
this->members_.m_map = this->priv_allocate_map(this->members_.m_map_size);
ptr_alloc_ptr nstart = this->members_.m_map + (this->members_.m_map_size - num_nodes) / 2;
ptr_alloc_ptr nfinish = nstart + num_nodes;
BOOST_TRY {
this->priv_create_nodes(nstart, nfinish);
}
BOOST_CATCH(...){
this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size);
this->members_.m_map = 0;
this->members_.m_map_size = 0;
BOOST_RETHROW
}
BOOST_CATCH_END
this->members_.m_start.priv_set_node(nstart);
this->members_.m_finish.priv_set_node(nfinish - 1);
this->members_.m_start.m_cur = this->members_.m_start.m_first;
this->members_.m_finish.m_cur = this->members_.m_finish.m_first +
num_elements % s_buffer_size();
// }
}
void priv_create_nodes(ptr_alloc_ptr nstart, ptr_alloc_ptr nfinish)
{
ptr_alloc_ptr cur = nstart;
BOOST_TRY {
for (; cur < nfinish; ++cur)
*cur = this->priv_allocate_node();
}
BOOST_CATCH(...){
this->priv_destroy_nodes(nstart, cur);
BOOST_RETHROW
}
BOOST_CATCH_END
}
void priv_destroy_nodes(ptr_alloc_ptr nstart, ptr_alloc_ptr nfinish) BOOST_NOEXCEPT_OR_NOTHROW
{
for (ptr_alloc_ptr n = nstart; n < nfinish; ++n)
this->priv_deallocate_node(*n);
}
void priv_clear_map() BOOST_NOEXCEPT_OR_NOTHROW
{
if (this->members_.m_map) {
this->priv_destroy_nodes(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1);
this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size);
this->members_.m_map = 0;
this->members_.m_map_size = 0;
this->members_.m_start = iterator();
this->members_.m_finish = this->members_.m_start;
}
}
enum { InitialMapSize = 8 };
protected:
struct members_holder
: public ptr_alloc_t
, public allocator_type
{
members_holder()
: map_allocator_type(), allocator_type()
, m_map(0), m_map_size(0)
, m_start(), m_finish(m_start)
{}
explicit members_holder(const allocator_type &a)
: map_allocator_type(a), allocator_type(a)
, m_map(0), m_map_size(0)
, m_start(), m_finish(m_start)
{}
template<class ValAllocConvertible, class PtrAllocConvertible>
members_holder(BOOST_FWD_REF(PtrAllocConvertible) pa, BOOST_FWD_REF(ValAllocConvertible) va)
: map_allocator_type(boost::forward<PtrAllocConvertible>(pa))
, allocator_type (boost::forward<ValAllocConvertible>(va))
, m_map(0), m_map_size(0)
, m_start(), m_finish(m_start)
{}
ptr_alloc_ptr m_map;
val_alloc_size m_map_size;
iterator m_start;
iterator m_finish;
} members_;
ptr_alloc_t &ptr_alloc() BOOST_NOEXCEPT_OR_NOTHROW
{ return members_; }
const ptr_alloc_t &ptr_alloc() const BOOST_NOEXCEPT_OR_NOTHROW
{ return members_; }
allocator_type &alloc() BOOST_NOEXCEPT_OR_NOTHROW
{ return members_; }
const allocator_type &alloc() const BOOST_NOEXCEPT_OR_NOTHROW
{ return members_; }
};
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
//! A double-ended queue is a sequence that supports random access to elements, constant time insertion
//! and removal of elements at the end of the sequence, and linear time insertion and removal of elements in the middle.
//!
//! \tparam T The type of object that is stored in the deque
//! \tparam Allocator The allocator used for all internal memory management
template <class T, class Allocator = new_allocator<T> >
#else
template <class T, class Allocator>
#endif
class deque : protected deque_base<Allocator>
{
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
private:
typedef deque_base<Allocator> Base;
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
public:
//////////////////////////////////////////////
//
// types
//
//////////////////////////////////////////////
typedef T value_type;
typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer const_pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::reference reference;
typedef typename ::boost::container::allocator_traits<Allocator>::const_reference const_reference;
typedef typename ::boost::container::allocator_traits<Allocator>::size_type size_type;
typedef typename ::boost::container::allocator_traits<Allocator>::difference_type difference_type;
typedef Allocator allocator_type;
typedef BOOST_CONTAINER_IMPDEF(allocator_type) stored_allocator_type;
typedef BOOST_CONTAINER_IMPDEF(typename Base::iterator) iterator;
typedef BOOST_CONTAINER_IMPDEF(typename Base::const_iterator) const_iterator;
typedef BOOST_CONTAINER_IMPDEF(boost::container::reverse_iterator<iterator>) reverse_iterator;
typedef BOOST_CONTAINER_IMPDEF(boost::container::reverse_iterator<const_iterator>) const_reverse_iterator;
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
private: // Internal typedefs
BOOST_COPYABLE_AND_MOVABLE(deque)
typedef typename Base::ptr_alloc_ptr index_pointer;
static size_type s_buffer_size()
{ return Base::s_buffer_size(); }
typedef allocator_traits<Allocator> allocator_traits_type;
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
public:
//////////////////////////////////////////////
//
// construct/copy/destroy
//
//////////////////////////////////////////////
//! <b>Effects</b>: Default constructors a deque.
//!
//! <b>Throws</b>: If allocator_type's default constructor throws.
//!
//! <b>Complexity</b>: Constant.
deque() BOOST_NOEXCEPT_IF(container_detail::is_nothrow_default_constructible<Allocator>::value)
: Base()
{}
//! <b>Effects</b>: Constructs a deque taking the allocator as parameter.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
explicit deque(const allocator_type& a) BOOST_NOEXCEPT_OR_NOTHROW
: Base(a)
{}
//! <b>Effects</b>: Constructs a deque
//! and inserts n value initialized values.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's value initialization throws.
//!
//! <b>Complexity</b>: Linear to n.
explicit deque(size_type n)
: Base(n, allocator_type())
{
container_detail::insert_value_initialized_n_proxy<Allocator, iterator> proxy;
proxy.uninitialized_copy_n_and_update(this->alloc(), this->begin(), n);
//deque_base will deallocate in case of exception...
}
//! <b>Effects</b>: Constructs a deque
//! and inserts n default initialized values.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's default initialization or copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
//!
//! <b>Note</b>: Non-standard extension
deque(size_type n, default_init_t)
: Base(n, allocator_type())
{
container_detail::insert_default_initialized_n_proxy<Allocator, iterator> proxy;
proxy.uninitialized_copy_n_and_update(this->alloc(), this->begin(), n);
//deque_base will deallocate in case of exception...
}
//! <b>Effects</b>: Constructs a deque that will use a copy of allocator a
//! and inserts n value initialized values.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's value initialization throws.
//!
//! <b>Complexity</b>: Linear to n.
explicit deque(size_type n, const allocator_type &a)
: Base(n, a)
{
container_detail::insert_value_initialized_n_proxy<Allocator, iterator> proxy;
proxy.uninitialized_copy_n_and_update(this->alloc(), this->begin(), n);
//deque_base will deallocate in case of exception...
}
//! <b>Effects</b>: Constructs a deque that will use a copy of allocator a
//! and inserts n default initialized values.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's default initialization or copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
//!
//! <b>Note</b>: Non-standard extension
deque(size_type n, default_init_t, const allocator_type &a)
: Base(n, a)
{
container_detail::insert_default_initialized_n_proxy<Allocator, iterator> proxy;
proxy.uninitialized_copy_n_and_update(this->alloc(), this->begin(), n);
//deque_base will deallocate in case of exception...
}
//! <b>Effects</b>: Constructs a deque that will use a copy of allocator a
//! and inserts n copies of value.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
deque(size_type n, const value_type& value)
: Base(n, allocator_type())
{ this->priv_fill_initialize(value); }
//! <b>Effects</b>: Constructs a deque that will use a copy of allocator a
//! and inserts n copies of value.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
deque(size_type n, const value_type& value, const allocator_type& a)
: Base(n, a)
{ this->priv_fill_initialize(value); }
//! <b>Effects</b>: Constructs a deque that will use a copy of allocator a
//! and inserts a copy of the range [first, last) in the deque.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's constructor taking a dereferenced InIt throws.
//!
//! <b>Complexity</b>: Linear to the range [first, last).
template <class InIt>
deque(InIt first, InIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::disable_if_convertible
<InIt, size_type>::type * = 0
#endif
)
: Base(allocator_type())
{
this->priv_range_initialize(first, last);
}
//! <b>Effects</b>: Constructs a deque that will use a copy of allocator a
//! and inserts a copy of the range [first, last) in the deque.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's constructor taking a dereferenced InIt throws.
//!
//! <b>Complexity</b>: Linear to the range [first, last).
template <class InIt>
deque(InIt first, InIt last, const allocator_type& a
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::disable_if_convertible
<InIt, size_type>::type * = 0
#endif
)
: Base(a)
{
this->priv_range_initialize(first, last);
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
//! <b>Effects</b>: Constructs a deque that will use a copy of allocator a
//! and inserts a copy of the range [il.begin(), il.end()) in the deque.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's constructor taking a dereferenced std::initializer_list iterator throws.
//!
//! <b>Complexity</b>: Linear to the range [il.begin(), il.end()).
deque(std::initializer_list<value_type> il, const allocator_type& a = allocator_type())
: Base(a)
{
this->priv_range_initialize(il.begin(), il.end());
}
#endif
//! <b>Effects</b>: Copy constructs a deque.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
deque(const deque& x)
: Base(allocator_traits_type::select_on_container_copy_construction(x.alloc()))
{
if(x.size()){
this->priv_initialize_map(x.size());
boost::container::uninitialized_copy_alloc
(this->alloc(), x.begin(), x.end(), this->members_.m_start);
}
}
//! <b>Effects</b>: Move constructor. Moves x's resources to *this.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
deque(BOOST_RV_REF(deque) x) BOOST_NOEXCEPT_OR_NOTHROW
: Base(BOOST_MOVE_BASE(Base, x))
{ this->swap_members(x); }
//! <b>Effects</b>: Copy constructs a vector using the specified allocator.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Throws</b>: If allocation
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
deque(const deque& x, const allocator_type &a)
: Base(a)
{
if(x.size()){
this->priv_initialize_map(x.size());
boost::container::uninitialized_copy_alloc
(this->alloc(), x.begin(), x.end(), this->members_.m_start);
}
}
//! <b>Effects</b>: Move constructor using the specified allocator.
//! Moves x's resources to *this if a == allocator_type().
//! Otherwise copies values from x to *this.
//!
//! <b>Throws</b>: If allocation or T's copy constructor throws.
//!
//! <b>Complexity</b>: Constant if a == x.get_allocator(), linear otherwise.
deque(BOOST_RV_REF(deque) x, const allocator_type &a)
: Base(a)
{
if(x.alloc() == a){
this->swap_members(x);
}
else{
if(x.size()){
this->priv_initialize_map(x.size());
boost::container::uninitialized_copy_alloc
( this->alloc(), boost::make_move_iterator(x.begin())
, boost::make_move_iterator(x.end()), this->members_.m_start);
}
}
}
//! <b>Effects</b>: Destroys the deque. All stored values are destroyed
//! and used memory is deallocated.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements.
~deque() BOOST_NOEXCEPT_OR_NOTHROW
{
this->priv_destroy_range(this->members_.m_start, this->members_.m_finish);
}
//! <b>Effects</b>: Makes *this contain the same elements as x.
//!
//! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
//! of each of x's elements.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the number of elements in x.
deque& operator= (BOOST_COPY_ASSIGN_REF(deque) x)
{
if (&x != this){
allocator_type &this_alloc = this->alloc();
const allocator_type &x_alloc = x.alloc();
container_detail::bool_<allocator_traits_type::
propagate_on_container_copy_assignment::value> flag;
if(flag && this_alloc != x_alloc){
this->clear();
this->shrink_to_fit();
}
container_detail::assign_alloc(this->alloc(), x.alloc(), flag);
container_detail::assign_alloc(this->ptr_alloc(), x.ptr_alloc(), flag);
this->assign(x.cbegin(), x.cend());
}
return *this;
}
//! <b>Effects</b>: Move assignment. All x's values are transferred to *this.
//!
//! <b>Throws</b>: If allocator_traits_type::propagate_on_container_move_assignment
//! is false and (allocation throws or value_type's move constructor throws)
//!
//! <b>Complexity</b>: Constant if allocator_traits_type::
//! propagate_on_container_move_assignment is true or
//! this->get>allocator() == x.get_allocator(). Linear otherwise.
deque& operator= (BOOST_RV_REF(deque) x)
BOOST_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_move_assignment::value
|| allocator_traits_type::is_always_equal::value)
{
BOOST_ASSERT(this != &x);
allocator_type &this_alloc = this->alloc();
allocator_type &x_alloc = x.alloc();
const bool propagate_alloc = allocator_traits_type::
propagate_on_container_move_assignment::value;
container_detail::bool_<propagate_alloc> flag;
const bool allocators_equal = this_alloc == x_alloc; (void)allocators_equal;
//Resources can be transferred if both allocators are
//going to be equal after this function (either propagated or already equal)
if(propagate_alloc || allocators_equal){
//Destroy objects but retain memory in case x reuses it in the future
this->clear();
//Move allocator if needed
container_detail::move_alloc(this_alloc, x_alloc, flag);
container_detail::move_alloc(this->ptr_alloc(), x.ptr_alloc(), flag);
//Nothrow swap
this->swap_members(x);
}
//Else do a one by one move
else{
this->assign( boost::make_move_iterator(x.begin())
, boost::make_move_iterator(x.end()));
}
return *this;
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
//! <b>Effects</b>: Makes *this contain the same elements as il.
//!
//! <b>Postcondition</b>: this->size() == il.size(). *this contains a copy
//! of each of x's elements.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the number of elements in il.
deque& operator=(std::initializer_list<value_type> il)
{
this->assign(il.begin(), il.end());
return *this;
}
#endif
//! <b>Effects</b>: Assigns the n copies of val to *this.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
void assign(size_type n, const T& val)
{
typedef constant_iterator<value_type, difference_type> c_it;
this->assign(c_it(val, n), c_it());
}
//! <b>Effects</b>: Assigns the the range [first, last) to *this.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's constructor from dereferencing InIt throws.
//!
//! <b>Complexity</b>: Linear to n.
template <class InIt>
void assign(InIt first, InIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::disable_if_or
< void
, container_detail::is_convertible<InIt, size_type>
, container_detail::is_not_input_iterator<InIt>
>::type * = 0
#endif
)
{
iterator cur = this->begin();
for ( ; first != last && cur != end(); ++cur, ++first){
*cur = *first;
}
if (first == last){
this->erase(cur, this->cend());
}
else{
this->insert(this->cend(), first, last);
}
}
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template <class FwdIt>
void assign(FwdIt first, FwdIt last
, typename container_detail::disable_if_or
< void
, container_detail::is_convertible<FwdIt, size_type>
, container_detail::is_input_iterator<FwdIt>
>::type * = 0
)
{
const size_type len = boost::container::iterator_distance(first, last);
if (len > size()) {
FwdIt mid = first;
boost::container::iterator_advance(mid, this->size());
boost::container::copy(first, mid, begin());
this->insert(this->cend(), mid, last);
}
else{
this->erase(boost::container::copy(first, last, this->begin()), cend());
}
}
#endif
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
//! <b>Effects</b>: Assigns the the range [il.begin(), il.end()) to *this.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's constructor from dereferencing std::initializer_list iterator throws.
//!
//! <b>Complexity</b>: Linear to il.size().
void assign(std::initializer_list<value_type> il)
{ this->assign(il.begin(), il.end()); }
#endif
//! <b>Effects</b>: Returns a copy of the internal allocator.
//!
//! <b>Throws</b>: If allocator's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const BOOST_NOEXCEPT_OR_NOTHROW
{ return Base::alloc(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
const stored_allocator_type &get_stored_allocator() const BOOST_NOEXCEPT_OR_NOTHROW
{ return Base::alloc(); }
//////////////////////////////////////////////
//
// iterators
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
stored_allocator_type &get_stored_allocator() BOOST_NOEXCEPT_OR_NOTHROW
{ return Base::alloc(); }
//! <b>Effects</b>: Returns an iterator to the first element contained in the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin() BOOST_NOEXCEPT_OR_NOTHROW
{ return this->members_.m_start; }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->members_.m_start; }
//! <b>Effects</b>: Returns an iterator to the end of the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end() BOOST_NOEXCEPT_OR_NOTHROW
{ return this->members_.m_finish; }
//! <b>Effects</b>: Returns a const_iterator to the end of the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->members_.m_finish; }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin() BOOST_NOEXCEPT_OR_NOTHROW
{ return reverse_iterator(this->members_.m_finish); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const BOOST_NOEXCEPT_OR_NOTHROW
{ return const_reverse_iterator(this->members_.m_finish); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend() BOOST_NOEXCEPT_OR_NOTHROW
{ return reverse_iterator(this->members_.m_start); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const BOOST_NOEXCEPT_OR_NOTHROW
{ return const_reverse_iterator(this->members_.m_start); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->members_.m_start; }
//! <b>Effects</b>: Returns a const_iterator to the end of the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->members_.m_finish; }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const BOOST_NOEXCEPT_OR_NOTHROW
{ return const_reverse_iterator(this->members_.m_finish); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const BOOST_NOEXCEPT_OR_NOTHROW
{ return const_reverse_iterator(this->members_.m_start); }
//////////////////////////////////////////////
//
// capacity
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns true if the deque contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->members_.m_finish == this->members_.m_start; }
//! <b>Effects</b>: Returns the number of the elements contained in the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const BOOST_NOEXCEPT_OR_NOTHROW
{ return this->members_.m_finish - this->members_.m_start; }
//! <b>Effects</b>: Returns the largest possible size of the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const BOOST_NOEXCEPT_OR_NOTHROW
{ return allocator_traits_type::max_size(this->alloc()); }
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are value initialized.
//!
//! <b>Throws</b>: If memory allocation throws, or T's constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size)
{
const size_type len = size();
if (new_size < len)
this->priv_erase_last_n(len - new_size);
else{
const size_type n = new_size - this->size();
container_detail::insert_value_initialized_n_proxy<Allocator, iterator> proxy;
priv_insert_back_aux_impl(n, proxy);
}
}
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are default initialized.
//!
//! <b>Throws</b>: If memory allocation throws, or T's constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
//!
//! <b>Note</b>: Non-standard extension
void resize(size_type new_size, default_init_t)
{
const size_type len = size();
if (new_size < len)
this->priv_erase_last_n(len - new_size);
else{
const size_type n = new_size - this->size();
container_detail::insert_default_initialized_n_proxy<Allocator, iterator> proxy;
priv_insert_back_aux_impl(n, proxy);
}
}
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are copy constructed from x.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size, const value_type& x)
{
const size_type len = size();
if (new_size < len)
this->erase(this->members_.m_start + new_size, this->members_.m_finish);
else
this->insert(this->members_.m_finish, new_size - len, x);
}
//! <b>Effects</b>: Tries to deallocate the excess of memory created
//! with previous allocations. The size of the deque is unchanged
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Constant.
void shrink_to_fit()
{
//This deque implementation already
//deallocates excess nodes when erasing
//so there is nothing to do except for
//empty deque
if(this->empty()){
this->priv_clear_map();
}
}
//////////////////////////////////////////////
//
// element access
//
//////////////////////////////////////////////
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the first
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference front() BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(!this->empty());
return *this->members_.m_start;
}
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the first element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference front() const BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(!this->empty());
return *this->members_.m_start;
}
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the last
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference back() BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(!this->empty());
return *(end()-1);
}
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the last
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference back() const BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(!this->empty());
return *(cend()-1);
}
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference operator[](size_type n) BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(this->size() > n);
return this->members_.m_start[difference_type(n)];
}
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference operator[](size_type n) const BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(this->size() > n);
return this->members_.m_start[difference_type(n)];
}
//! <b>Requires</b>: size() >= n.
//!
//! <b>Effects</b>: Returns an iterator to the nth element
//! from the beginning of the container. Returns end()
//! if n == size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension
iterator nth(size_type n) BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(this->size() >= n);
return iterator(this->begin()+n);
}
//! <b>Requires</b>: size() >= n.
//!
//! <b>Effects</b>: Returns a const_iterator to the nth element
//! from the beginning of the container. Returns end()
//! if n == size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension
const_iterator nth(size_type n) const BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(this->size() >= n);
return const_iterator(this->cbegin()+n);
}
//! <b>Requires</b>: begin() <= p <= end().
//!
//! <b>Effects</b>: Returns the index of the element pointed by p
//! and size() if p == end().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension
size_type index_of(iterator p) BOOST_NOEXCEPT_OR_NOTHROW
{
//Range checked priv_index_of
return this->priv_index_of(p);
}
//! <b>Requires</b>: begin() <= p <= end().
//!
//! <b>Effects</b>: Returns the index of the element pointed by p
//! and size() if p == end().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension
size_type index_of(const_iterator p) const BOOST_NOEXCEPT_OR_NOTHROW
{
//Range checked priv_index_of
return this->priv_index_of(p);
}
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
reference at(size_type n)
{
this->priv_throw_if_out_of_range(n);
return (*this)[n];
}
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
const_reference at(size_type n) const
{
this->priv_throw_if_out_of_range(n);
return (*this)[n];
}
//////////////////////////////////////////////
//
// modifiers
//
//////////////////////////////////////////////
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the beginning of the deque.
//!
//! <b>Returns</b>: A reference to the created object.
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time
template <class... Args>
reference emplace_front(BOOST_FWD_REF(Args)... args)
{
if(this->priv_push_front_simple_available()){
reference r = *this->priv_push_front_simple_pos();
allocator_traits_type::construct
( this->alloc()
, this->priv_push_front_simple_pos()
, boost::forward<Args>(args)...);
this->priv_push_front_simple_commit();
return r;
}
else{
typedef container_detail::insert_nonmovable_emplace_proxy<Allocator, iterator, Args...> type;
return *this->priv_insert_front_aux_impl(1, type(boost::forward<Args>(args)...));
}
}
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the end of the deque.
//!
//! <b>Returns</b>: A reference to the created object.
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time
template <class... Args>
reference emplace_back(BOOST_FWD_REF(Args)... args)
{
if(this->priv_push_back_simple_available()){
reference r = *this->priv_push_back_simple_pos();
allocator_traits_type::construct
( this->alloc()
, this->priv_push_back_simple_pos()
, boost::forward<Args>(args)...);
this->priv_push_back_simple_commit();
return r;
}
else{
typedef container_detail::insert_nonmovable_emplace_proxy<Allocator, iterator, Args...> type;
return *this->priv_insert_back_aux_impl(1, type(boost::forward<Args>(args)...));
}
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... before p
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws.
//!
//! <b>Complexity</b>: If p is end(), amortized constant time
//! Linear time otherwise.
template <class... Args>
iterator emplace(const_iterator p, BOOST_FWD_REF(Args)... args)
{
BOOST_ASSERT(this->priv_in_range_or_end(p));
if(p == this->cbegin()){
this->emplace_front(boost::forward<Args>(args)...);
return this->begin();
}
else if(p == this->cend()){
this->emplace_back(boost::forward<Args>(args)...);
return (this->end()-1);
}
else{
typedef container_detail::insert_emplace_proxy<Allocator, iterator, Args...> type;
return this->priv_insert_aux_impl(p, 1, type(boost::forward<Args>(args)...));
}
}
#else //!defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#define BOOST_CONTAINER_DEQUE_EMPLACE_CODE(N) \
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N\
reference emplace_front(BOOST_MOVE_UREF##N)\
{\
if(priv_push_front_simple_available()){\
reference r = *this->priv_push_front_simple_pos();\
allocator_traits_type::construct\
( this->alloc(), this->priv_push_front_simple_pos() BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
priv_push_front_simple_commit();\
return r;\
}\
else{\
typedef container_detail::insert_nonmovable_emplace_proxy##N\
<Allocator, iterator BOOST_MOVE_I##N BOOST_MOVE_TARG##N> type;\
return *priv_insert_front_aux_impl(1, type(BOOST_MOVE_FWD##N));\
}\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N\
reference emplace_back(BOOST_MOVE_UREF##N)\
{\
if(priv_push_back_simple_available()){\
reference r = *this->priv_push_back_simple_pos();\
allocator_traits_type::construct\
( this->alloc(), this->priv_push_back_simple_pos() BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
priv_push_back_simple_commit();\
return r;\
}\
else{\
typedef container_detail::insert_nonmovable_emplace_proxy##N\
<Allocator, iterator BOOST_MOVE_I##N BOOST_MOVE_TARG##N> type;\
return *priv_insert_back_aux_impl(1, type(BOOST_MOVE_FWD##N));\
}\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N\
iterator emplace(const_iterator p BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
BOOST_ASSERT(this->priv_in_range_or_end(p));\
if(p == this->cbegin()){\
this->emplace_front(BOOST_MOVE_FWD##N);\
return this->begin();\
}\
else if(p == cend()){\
this->emplace_back(BOOST_MOVE_FWD##N);\
return (--this->end());\
}\
else{\
typedef container_detail::insert_emplace_proxy_arg##N\
<Allocator, iterator BOOST_MOVE_I##N BOOST_MOVE_TARG##N> type;\
return this->priv_insert_aux_impl(p, 1, type(BOOST_MOVE_FWD##N));\
}\
}
//
BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_DEQUE_EMPLACE_CODE)
#undef BOOST_CONTAINER_DEQUE_EMPLACE_CODE
#endif // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts a copy of x at the front of the deque.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_front(const T &x);
//! <b>Effects</b>: Constructs a new element in the front of the deque
//! and moves the resources of x to this new element.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_front(T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH(push_front, T, void, priv_push_front)
#endif
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts a copy of x at the end of the deque.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(const T &x);
//! <b>Effects</b>: Constructs a new element in the end of the deque
//! and moves the resources of x to this new element.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back)
#endif
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of x before p.
//!
//! <b>Returns</b>: an iterator to the inserted element.
//!
//! <b>Throws</b>: If memory allocation throws or x's copy constructor throws.
//!
//! <b>Complexity</b>: If p is end(), amortized constant time
//! Linear time otherwise.
iterator insert(const_iterator p, const T &x);
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a new element before p with x's resources.
//!
//! <b>Returns</b>: an iterator to the inserted element.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: If p is end(), amortized constant time
//! Linear time otherwise.
iterator insert(const_iterator p, T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator, const_iterator)
#endif
//! <b>Requires</b>: pos must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert n copies of x before pos.
//!
//! <b>Returns</b>: an iterator to the first inserted element or pos if n is 0.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
iterator insert(const_iterator pos, size_type n, const value_type& x)
{
//Range check of p is done by insert()
typedef constant_iterator<value_type, difference_type> c_it;
return this->insert(pos, c_it(x, n), c_it());
}
//! <b>Requires</b>: pos must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
//!
//! <b>Returns</b>: an iterator to the first inserted element or pos if first == last.
//!
//! <b>Throws</b>: If memory allocation throws, T's constructor from a
//! dereferenced InIt throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to distance [first, last).
template <class InIt>
iterator insert(const_iterator pos, InIt first, InIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::disable_if_or
< void
, container_detail::is_convertible<InIt, size_type>
, container_detail::is_not_input_iterator<InIt>
>::type * = 0
#endif
)
{
BOOST_ASSERT(this->priv_in_range_or_end(pos));
size_type n = 0;
iterator it(pos.unconst());
for(;first != last; ++first, ++n){
it = this->emplace(it, *first);
++it;
}
it -= n;
return it;
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
//! <b>Requires</b>: pos must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of the [il.begin(), il.end()) range before pos.
//!
//! <b>Returns</b>: an iterator to the first inserted element or pos if il.begin() == il.end().
//!
//! <b>Throws</b>: If memory allocation throws, T's constructor from a
//! dereferenced std::initializer_list throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to distance [il.begin(), il.end()).
iterator insert(const_iterator pos, std::initializer_list<value_type> il)
{
//Range check os pos is done in insert()
return insert(pos, il.begin(), il.end());
}
#endif
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template <class FwdIt>
iterator insert(const_iterator p, FwdIt first, FwdIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::disable_if_or
< void
, container_detail::is_convertible<FwdIt, size_type>
, container_detail::is_input_iterator<FwdIt>
>::type * = 0
#endif
)
{
BOOST_ASSERT(this->priv_in_range_or_end(p));
container_detail::insert_range_proxy<Allocator, FwdIt, iterator> proxy(first);
return priv_insert_aux_impl(p, boost::container::iterator_distance(first, last), proxy);
}
#endif
//! <b>Effects</b>: Removes the first element from the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
void pop_front() BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(!this->empty());
if (this->members_.m_start.m_cur != this->members_.m_start.m_last - 1) {
allocator_traits_type::destroy
( this->alloc()
, boost::movelib::to_raw_pointer(this->members_.m_start.m_cur)
);
++this->members_.m_start.m_cur;
}
else
this->priv_pop_front_aux();
}
//! <b>Effects</b>: Removes the last element from the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
void pop_back() BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(!this->empty());
if (this->members_.m_finish.m_cur != this->members_.m_finish.m_first) {
--this->members_.m_finish.m_cur;
allocator_traits_type::destroy
( this->alloc()
, boost::movelib::to_raw_pointer(this->members_.m_finish.m_cur)
);
}
else
this->priv_pop_back_aux();
}
//! <b>Effects</b>: Erases the element at p.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements between pos and the
//! last element (if pos is near the end) or the first element
//! if(pos is near the beginning).
//! Constant if pos is the first or the last element.
iterator erase(const_iterator pos) BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(this->priv_in_range(pos));
iterator next = pos.unconst();
++next;
size_type index = pos - this->members_.m_start;
if (index < (this->size()/2)) {
boost::container::move_backward(this->begin(), pos.unconst(), next);
pop_front();
}
else {
boost::container::move(next, this->end(), pos.unconst());
pop_back();
}
return this->members_.m_start + index;
}
//! <b>Effects</b>: Erases the elements pointed by [first, last).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the distance between first and
//! last plus the elements between pos and the
//! last element (if pos is near the end) or the first element
//! if(pos is near the beginning).
iterator erase(const_iterator first, const_iterator last) BOOST_NOEXCEPT_OR_NOTHROW
{
BOOST_ASSERT(first == last ||
(first < last && this->priv_in_range(first) && this->priv_in_range_or_end(last)));
if (first == this->members_.m_start && last == this->members_.m_finish) {
this->clear();
return this->members_.m_finish;
}
else {
const size_type n = static_cast<size_type>(last - first);
const size_type elems_before = static_cast<size_type>(first - this->members_.m_start);
if (elems_before < (this->size() - n) - elems_before) {
boost::container::move_backward(begin(), first.unconst(), last.unconst());
iterator new_start = this->members_.m_start + n;
this->priv_destroy_range(this->members_.m_start, new_start);
this->priv_destroy_nodes(this->members_.m_start.m_node, new_start.m_node);
this->members_.m_start = new_start;
}
else {
boost::container::move(last.unconst(), end(), first.unconst());
iterator new_finish = this->members_.m_finish - n;
this->priv_destroy_range(new_finish, this->members_.m_finish);
this->priv_destroy_nodes(new_finish.m_node + 1, this->members_.m_finish.m_node + 1);
this->members_.m_finish = new_finish;
}
return this->members_.m_start + elems_before;
}
}
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(deque &x)
BOOST_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_swap::value
|| allocator_traits_type::is_always_equal::value)
{
this->swap_members(x);
container_detail::bool_<allocator_traits_type::propagate_on_container_swap::value> flag;
container_detail::swap_alloc(this->alloc(), x.alloc(), flag);
container_detail::swap_alloc(this->ptr_alloc(), x.ptr_alloc(), flag);
}
//! <b>Effects</b>: Erases all the elements of the deque.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements in the deque.
void clear() BOOST_NOEXCEPT_OR_NOTHROW
{
for (index_pointer node = this->members_.m_start.m_node + 1;
node < this->members_.m_finish.m_node;
++node) {
this->priv_destroy_range(*node, *node + this->s_buffer_size());
this->priv_deallocate_node(*node);
}
if (this->members_.m_start.m_node != this->members_.m_finish.m_node) {
this->priv_destroy_range(this->members_.m_start.m_cur, this->members_.m_start.m_last);
this->priv_destroy_range(this->members_.m_finish.m_first, this->members_.m_finish.m_cur);
this->priv_deallocate_node(this->members_.m_finish.m_first);
}
else
this->priv_destroy_range(this->members_.m_start.m_cur, this->members_.m_finish.m_cur);
this->members_.m_finish = this->members_.m_start;
}
//! <b>Effects</b>: Returns true if x and y are equal
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator==(const deque& x, const deque& y)
{ return x.size() == y.size() && ::boost::container::algo_equal(x.begin(), x.end(), y.begin()); }
//! <b>Effects</b>: Returns true if x and y are unequal
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator!=(const deque& x, const deque& y)
{ return !(x == y); }
//! <b>Effects</b>: Returns true if x is less than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator<(const deque& x, const deque& y)
{ return ::boost::container::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); }
//! <b>Effects</b>: Returns true if x is greater than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator>(const deque& x, const deque& y)
{ return y < x; }
//! <b>Effects</b>: Returns true if x is equal or less than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator<=(const deque& x, const deque& y)
{ return !(y < x); }
//! <b>Effects</b>: Returns true if x is equal or greater than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator>=(const deque& x, const deque& y)
{ return !(x < y); }
//! <b>Effects</b>: x.swap(y)
//!
//! <b>Complexity</b>: Constant.
friend void swap(deque& x, deque& y)
{ x.swap(y); }
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
private:
size_type priv_index_of(const_iterator p) const
{
BOOST_ASSERT(this->cbegin() <= p);
BOOST_ASSERT(p <= this->cend());
return static_cast<size_type>(p - this->cbegin());
}
void priv_erase_last_n(size_type n)
{
if(n == this->size()) {
this->clear();
}
else {
iterator new_finish = this->members_.m_finish - n;
this->priv_destroy_range(new_finish, this->members_.m_finish);
this->priv_destroy_nodes(new_finish.m_node + 1, this->members_.m_finish.m_node + 1);
this->members_.m_finish = new_finish;
}
}
void priv_throw_if_out_of_range(size_type n) const
{
if (n >= this->size())
throw_out_of_range("deque::at out of range");
}
bool priv_in_range(const_iterator pos) const
{
return (this->begin() <= pos) && (pos < this->end());
}
bool priv_in_range_or_end(const_iterator pos) const
{
return (this->begin() <= pos) && (pos <= this->end());
}
template <class U>
iterator priv_insert(const_iterator p, BOOST_FWD_REF(U) x)
{
BOOST_ASSERT(this->priv_in_range_or_end(p));
if (p == cbegin()){
this->push_front(::boost::forward<U>(x));
return begin();
}
else if (p == cend()){
this->push_back(::boost::forward<U>(x));
return --end();
}
else {
return priv_insert_aux_impl
( p, (size_type)1
, container_detail::get_insert_value_proxy<iterator, Allocator>(::boost::forward<U>(x)));
}
}
template <class U>
void priv_push_front(BOOST_FWD_REF(U) x)
{
if(this->priv_push_front_simple_available()){
allocator_traits_type::construct
( this->alloc(), this->priv_push_front_simple_pos(), ::boost::forward<U>(x));
this->priv_push_front_simple_commit();
}
else{
priv_insert_aux_impl
( this->cbegin(), (size_type)1
, container_detail::get_insert_value_proxy<iterator, Allocator>(::boost::forward<U>(x)));
}
}
template <class U>
void priv_push_back(BOOST_FWD_REF(U) x)
{
if(this->priv_push_back_simple_available()){
allocator_traits_type::construct
( this->alloc(), this->priv_push_back_simple_pos(), ::boost::forward<U>(x));
this->priv_push_back_simple_commit();
}
else{
priv_insert_aux_impl
( this->cend(), (size_type)1
, container_detail::get_insert_value_proxy<iterator, Allocator>(::boost::forward<U>(x)));
}
}
bool priv_push_back_simple_available() const
{
return this->members_.m_map &&
(this->members_.m_finish.m_cur != (this->members_.m_finish.m_last - 1));
}
T *priv_push_back_simple_pos() const
{
return boost::movelib::to_raw_pointer(this->members_.m_finish.m_cur);
}
void priv_push_back_simple_commit()
{
++this->members_.m_finish.m_cur;
}
bool priv_push_front_simple_available() const
{
return this->members_.m_map &&
(this->members_.m_start.m_cur != this->members_.m_start.m_first);
}
T *priv_push_front_simple_pos() const
{ return boost::movelib::to_raw_pointer(this->members_.m_start.m_cur) - 1; }
void priv_push_front_simple_commit()
{ --this->members_.m_start.m_cur; }
void priv_destroy_range(iterator p, iterator p2)
{
if(!Base::traits_t::trivial_dctr){
for(;p != p2; ++p){
allocator_traits_type::destroy(this->alloc(), boost::movelib::iterator_to_raw_pointer(p));
}
}
}
void priv_destroy_range(pointer p, pointer p2)
{
if(!Base::traits_t::trivial_dctr){
for(;p != p2; ++p){
allocator_traits_type::destroy(this->alloc(), boost::movelib::iterator_to_raw_pointer(p));
}
}
}
template<class InsertProxy>
iterator priv_insert_aux_impl(const_iterator p, size_type n, InsertProxy proxy)
{
iterator pos(p.unconst());
const size_type pos_n = p - this->cbegin();
if(!this->members_.m_map){
this->priv_initialize_map(0);
pos = this->begin();
}
const size_type elemsbefore = static_cast<size_type>(pos - this->members_.m_start);
const size_type length = this->size();
if (elemsbefore < length / 2) {
const iterator new_start = this->priv_reserve_elements_at_front(n);
const iterator old_start = this->members_.m_start;
if(!elemsbefore){
proxy.uninitialized_copy_n_and_update(this->alloc(), new_start, n);
this->members_.m_start = new_start;
}
else{
pos = this->members_.m_start + elemsbefore;
if (elemsbefore >= n) {
const iterator start_n = this->members_.m_start + n;
::boost::container::uninitialized_move_alloc
(this->alloc(), this->members_.m_start, start_n, new_start);
this->members_.m_start = new_start;
boost::container::move(start_n, pos, old_start);
proxy.copy_n_and_update(this->alloc(), pos - n, n);
}
else {
const size_type mid_count = n - elemsbefore;
const iterator mid_start = old_start - mid_count;
proxy.uninitialized_copy_n_and_update(this->alloc(), mid_start, mid_count);
this->members_.m_start = mid_start;
::boost::container::uninitialized_move_alloc
(this->alloc(), old_start, pos, new_start);
this->members_.m_start = new_start;
proxy.copy_n_and_update(this->alloc(), old_start, elemsbefore);
}
}
}
else {
const iterator new_finish = this->priv_reserve_elements_at_back(n);
const iterator old_finish = this->members_.m_finish;
const size_type elemsafter = length - elemsbefore;
if(!elemsafter){
proxy.uninitialized_copy_n_and_update(this->alloc(), old_finish, n);
this->members_.m_finish = new_finish;
}
else{
pos = old_finish - elemsafter;
if (elemsafter >= n) {
iterator finish_n = old_finish - difference_type(n);
::boost::container::uninitialized_move_alloc
(this->alloc(), finish_n, old_finish, old_finish);
this->members_.m_finish = new_finish;
boost::container::move_backward(pos, finish_n, old_finish);
proxy.copy_n_and_update(this->alloc(), pos, n);
}
else {
const size_type raw_gap = n - elemsafter;
::boost::container::uninitialized_move_alloc
(this->alloc(), pos, old_finish, old_finish + raw_gap);
BOOST_TRY{
proxy.copy_n_and_update(this->alloc(), pos, elemsafter);
proxy.uninitialized_copy_n_and_update(this->alloc(), old_finish, raw_gap);
}
BOOST_CATCH(...){
this->priv_destroy_range(old_finish, old_finish + elemsafter);
BOOST_RETHROW
}
BOOST_CATCH_END
this->members_.m_finish = new_finish;
}
}
}
return this->begin() + pos_n;
}
template <class InsertProxy>
iterator priv_insert_back_aux_impl(size_type n, InsertProxy proxy)
{
if(!this->members_.m_map){
this->priv_initialize_map(0);
}
iterator new_finish = this->priv_reserve_elements_at_back(n);
iterator old_finish = this->members_.m_finish;
proxy.uninitialized_copy_n_and_update(this->alloc(), old_finish, n);
this->members_.m_finish = new_finish;
return iterator(this->members_.m_finish - n);
}
template <class InsertProxy>
iterator priv_insert_front_aux_impl(size_type n, InsertProxy proxy)
{
if(!this->members_.m_map){
this->priv_initialize_map(0);
}
iterator new_start = this->priv_reserve_elements_at_front(n);
proxy.uninitialized_copy_n_and_update(this->alloc(), new_start, n);
this->members_.m_start = new_start;
return new_start;
}
iterator priv_fill_insert(const_iterator pos, size_type n, const value_type& x)
{
typedef constant_iterator<value_type, difference_type> c_it;
return this->insert(pos, c_it(x, n), c_it());
}
// Precondition: this->members_.m_start and this->members_.m_finish have already been initialized,
// but none of the deque's elements have yet been constructed.
void priv_fill_initialize(const value_type& value)
{
index_pointer cur = this->members_.m_start.m_node;
BOOST_TRY {
for ( ; cur < this->members_.m_finish.m_node; ++cur){
boost::container::uninitialized_fill_alloc
(this->alloc(), *cur, *cur + this->s_buffer_size(), value);
}
boost::container::uninitialized_fill_alloc
(this->alloc(), this->members_.m_finish.m_first, this->members_.m_finish.m_cur, value);
}
BOOST_CATCH(...){
this->priv_destroy_range(this->members_.m_start, iterator(*cur, cur));
BOOST_RETHROW
}
BOOST_CATCH_END
}
template <class InIt>
void priv_range_initialize(InIt first, InIt last, typename iterator_enable_if_tag<InIt, std::input_iterator_tag>::type* =0)
{
this->priv_initialize_map(0);
BOOST_TRY {
for ( ; first != last; ++first)
this->emplace_back(*first);
}
BOOST_CATCH(...){
this->clear();
BOOST_RETHROW
}
BOOST_CATCH_END
}
template <class FwdIt>
void priv_range_initialize(FwdIt first, FwdIt last, typename iterator_disable_if_tag<FwdIt, std::input_iterator_tag>::type* =0)
{
size_type n = 0;
n = boost::container::iterator_distance(first, last);
this->priv_initialize_map(n);
index_pointer cur_node = this->members_.m_start.m_node;
BOOST_TRY {
for (; cur_node < this->members_.m_finish.m_node; ++cur_node) {
FwdIt mid = first;
boost::container::iterator_advance(mid, this->s_buffer_size());
::boost::container::uninitialized_copy_alloc(this->alloc(), first, mid, *cur_node);
first = mid;
}
::boost::container::uninitialized_copy_alloc(this->alloc(), first, last, this->members_.m_finish.m_first);
}
BOOST_CATCH(...){
this->priv_destroy_range(this->members_.m_start, iterator(*cur_node, cur_node));
BOOST_RETHROW
}
BOOST_CATCH_END
}
// Called only if this->members_.m_finish.m_cur == this->members_.m_finish.m_first.
void priv_pop_back_aux() BOOST_NOEXCEPT_OR_NOTHROW
{
this->priv_deallocate_node(this->members_.m_finish.m_first);
this->members_.m_finish.priv_set_node(this->members_.m_finish.m_node - 1);
this->members_.m_finish.m_cur = this->members_.m_finish.m_last - 1;
allocator_traits_type::destroy
( this->alloc()
, boost::movelib::to_raw_pointer(this->members_.m_finish.m_cur)
);
}
// Called only if this->members_.m_start.m_cur == this->members_.m_start.m_last - 1. Note that
// if the deque has at least one element (a precondition for this member
// function), and if this->members_.m_start.m_cur == this->members_.m_start.m_last, then the deque
// must have at least two nodes.
void priv_pop_front_aux() BOOST_NOEXCEPT_OR_NOTHROW
{
allocator_traits_type::destroy
( this->alloc()
, boost::movelib::to_raw_pointer(this->members_.m_start.m_cur)
);
this->priv_deallocate_node(this->members_.m_start.m_first);
this->members_.m_start.priv_set_node(this->members_.m_start.m_node + 1);
this->members_.m_start.m_cur = this->members_.m_start.m_first;
}
iterator priv_reserve_elements_at_front(size_type n)
{
size_type vacancies = this->members_.m_start.m_cur - this->members_.m_start.m_first;
if (n > vacancies){
size_type new_elems = n-vacancies;
size_type new_nodes = (new_elems + this->s_buffer_size() - 1) /
this->s_buffer_size();
size_type s = (size_type)(this->members_.m_start.m_node - this->members_.m_map);
if (new_nodes > s){
this->priv_reallocate_map(new_nodes, true);
}
size_type i = 1;
BOOST_TRY {
for (; i <= new_nodes; ++i)
*(this->members_.m_start.m_node - i) = this->priv_allocate_node();
}
BOOST_CATCH(...) {
for (size_type j = 1; j < i; ++j)
this->priv_deallocate_node(*(this->members_.m_start.m_node - j));
BOOST_RETHROW
}
BOOST_CATCH_END
}
return this->members_.m_start - difference_type(n);
}
iterator priv_reserve_elements_at_back(size_type n)
{
size_type vacancies = (this->members_.m_finish.m_last - this->members_.m_finish.m_cur) - 1;
if (n > vacancies){
size_type new_elems = n - vacancies;
size_type new_nodes = (new_elems + this->s_buffer_size() - 1)/s_buffer_size();
size_type s = (size_type)(this->members_.m_map_size - (this->members_.m_finish.m_node - this->members_.m_map));
if (new_nodes + 1 > s){
this->priv_reallocate_map(new_nodes, false);
}
size_type i = 1;
BOOST_TRY {
for (; i <= new_nodes; ++i)
*(this->members_.m_finish.m_node + i) = this->priv_allocate_node();
}
BOOST_CATCH(...) {
for (size_type j = 1; j < i; ++j)
this->priv_deallocate_node(*(this->members_.m_finish.m_node + j));
BOOST_RETHROW
}
BOOST_CATCH_END
}
return this->members_.m_finish + difference_type(n);
}
void priv_reallocate_map(size_type nodes_to_add, bool add_at_front)
{
size_type old_num_nodes = this->members_.m_finish.m_node - this->members_.m_start.m_node + 1;
size_type new_num_nodes = old_num_nodes + nodes_to_add;
index_pointer new_nstart;
if (this->members_.m_map_size > 2 * new_num_nodes) {
new_nstart = this->members_.m_map + (this->members_.m_map_size - new_num_nodes) / 2
+ (add_at_front ? nodes_to_add : 0);
if (new_nstart < this->members_.m_start.m_node)
boost::container::move(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart);
else
boost::container::move_backward
(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart + old_num_nodes);
}
else {
size_type new_map_size =
this->members_.m_map_size + container_detail::max_value(this->members_.m_map_size, nodes_to_add) + 2;
index_pointer new_map = this->priv_allocate_map(new_map_size);
new_nstart = new_map + (new_map_size - new_num_nodes) / 2
+ (add_at_front ? nodes_to_add : 0);
boost::container::move(this->members_.m_start.m_node, this->members_.m_finish.m_node + 1, new_nstart);
this->priv_deallocate_map(this->members_.m_map, this->members_.m_map_size);
this->members_.m_map = new_map;
this->members_.m_map_size = new_map_size;
}
this->members_.m_start.priv_set_node(new_nstart);
this->members_.m_finish.priv_set_node(new_nstart + old_num_nodes - 1);
}
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
};
}}
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
namespace boost {
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class Allocator>
struct has_trivial_destructor_after_move<boost::container::deque<T, Allocator> >
{
typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer;
static const bool value = ::boost::has_trivial_destructor_after_move<Allocator>::value &&
::boost::has_trivial_destructor_after_move<pointer>::value;
};
}
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
#include <boost/container/detail/config_end.hpp>
#endif // #ifndef BOOST_CONTAINER_DEQUE_HPP