boost/lockfree/stack.hpp
// Copyright (C) 2008-2013 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_LOCKFREE_STACK_HPP_INCLUDED
#define BOOST_LOCKFREE_STACK_HPP_INCLUDED
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
#include <boost/integer_traits.hpp>
#include <boost/static_assert.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/type_traits/has_trivial_assign.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/lockfree/detail/atomic.hpp>
#include <boost/lockfree/detail/copy_payload.hpp>
#include <boost/lockfree/detail/freelist.hpp>
#include <boost/lockfree/detail/parameter.hpp>
#include <boost/lockfree/detail/tagged_ptr.hpp>
#ifdef BOOST_HAS_PRAGMA_ONCE
#pragma once
#endif
namespace boost {
namespace lockfree {
namespace detail {
typedef parameter::parameters<boost::parameter::optional<tag::allocator>,
boost::parameter::optional<tag::capacity>
> stack_signature;
}
/** The stack class provides a multi-writer/multi-reader stack, pushing and popping is lock-free,
* construction/destruction has to be synchronized. It uses a freelist for memory management,
* freed nodes are pushed to the freelist and not returned to the OS before the stack is destroyed.
*
* \b Policies:
*
* - \c boost::lockfree::fixed_sized<>, defaults to \c boost::lockfree::fixed_sized<false> <br>
* Can be used to completely disable dynamic memory allocations during push in order to ensure lockfree behavior.<br>
* If the data structure is configured as fixed-sized, the internal nodes are stored inside an array and they are addressed
* by array indexing. This limits the possible size of the stack to the number of elements that can be addressed by the index
* type (usually 2**16-2), but on platforms that lack double-width compare-and-exchange instructions, this is the best way
* to achieve lock-freedom.
*
* - \c boost::lockfree::capacity<>, optional <br>
* If this template argument is passed to the options, the size of the stack is set at compile-time. <br>
* It this option implies \c fixed_sized<true>
*
* - \c boost::lockfree::allocator<>, defaults to \c boost::lockfree::allocator<std::allocator<void>> <br>
* Specifies the allocator that is used for the internal freelist
*
* \b Requirements:
* - T must have a copy constructor
* */
#ifndef BOOST_DOXYGEN_INVOKED
template <typename T,
class A0 = boost::parameter::void_,
class A1 = boost::parameter::void_,
class A2 = boost::parameter::void_>
#else
template <typename T, ...Options>
#endif
class stack
{
private:
#ifndef BOOST_DOXYGEN_INVOKED
BOOST_STATIC_ASSERT(boost::has_trivial_assign<T>::value);
BOOST_STATIC_ASSERT(boost::has_trivial_destructor<T>::value);
typedef typename detail::stack_signature::bind<A0, A1, A2>::type bound_args;
static const bool has_capacity = detail::extract_capacity<bound_args>::has_capacity;
static const size_t capacity = detail::extract_capacity<bound_args>::capacity;
static const bool fixed_sized = detail::extract_fixed_sized<bound_args>::value;
static const bool node_based = !(has_capacity || fixed_sized);
static const bool compile_time_sized = has_capacity;
struct node
{
node(T const & val):
v(val)
{}
typedef typename detail::select_tagged_handle<node, node_based>::handle_type handle_t;
handle_t next;
const T v;
};
typedef typename detail::extract_allocator<bound_args, node>::type node_allocator;
typedef typename detail::select_freelist<node, node_allocator, compile_time_sized, fixed_sized, capacity>::type pool_t;
typedef typename pool_t::tagged_node_handle tagged_node_handle;
// check compile-time capacity
BOOST_STATIC_ASSERT((mpl::if_c<has_capacity,
mpl::bool_<capacity - 1 < boost::integer_traits<boost::uint16_t>::const_max>,
mpl::true_
>::type::value));
struct implementation_defined
{
typedef node_allocator allocator;
typedef std::size_t size_type;
};
#endif
BOOST_DELETED_FUNCTION(stack(stack const&))
BOOST_DELETED_FUNCTION(stack& operator= (stack const&))
public:
typedef T value_type;
typedef typename implementation_defined::allocator allocator;
typedef typename implementation_defined::size_type size_type;
/**
* \return true, if implementation is lock-free.
*
* \warning It only checks, if the top stack node and the freelist can be modified in a lock-free manner.
* On most platforms, the whole implementation is lock-free, if this is true. Using c++0x-style atomics,
* there is no possibility to provide a completely accurate implementation, because one would need to test
* every internal node, which is impossible if further nodes will be allocated from the operating system.
*
* */
bool is_lock_free (void) const
{
return tos.is_lock_free() && pool.is_lock_free();
}
//! Construct stack
// @{
stack(void):
pool(node_allocator(), capacity)
{
BOOST_ASSERT(has_capacity);
initialize();
}
template <typename U>
explicit stack(typename node_allocator::template rebind<U>::other const & alloc):
pool(alloc, capacity)
{
BOOST_STATIC_ASSERT(has_capacity);
initialize();
}
explicit stack(allocator const & alloc):
pool(alloc, capacity)
{
BOOST_ASSERT(has_capacity);
initialize();
}
// @}
//! Construct stack, allocate n nodes for the freelist.
// @{
explicit stack(size_type n):
pool(node_allocator(), n)
{
BOOST_ASSERT(!has_capacity);
initialize();
}
template <typename U>
stack(size_type n, typename node_allocator::template rebind<U>::other const & alloc):
pool(alloc, n)
{
BOOST_STATIC_ASSERT(!has_capacity);
initialize();
}
// @}
/** Allocate n nodes for freelist
*
* \pre only valid if no capacity<> argument given
* \note thread-safe, may block if memory allocator blocks
*
* */
void reserve(size_type n)
{
BOOST_STATIC_ASSERT(!has_capacity);
pool.template reserve<true>(n);
}
/** Allocate n nodes for freelist
*
* \pre only valid if no capacity<> argument given
* \note not thread-safe, may block if memory allocator blocks
*
* */
void reserve_unsafe(size_type n)
{
BOOST_STATIC_ASSERT(!has_capacity);
pool.template reserve<false>(n);
}
/** Destroys stack, free all nodes from freelist.
*
* \note not thread-safe
*
* */
~stack(void)
{
T dummy;
while(unsynchronized_pop(dummy))
{}
}
private:
#ifndef BOOST_DOXYGEN_INVOKED
void initialize(void)
{
tos.store(tagged_node_handle(pool.null_handle(), 0));
}
void link_nodes_atomic(node * new_top_node, node * end_node)
{
tagged_node_handle old_tos = tos.load(detail::memory_order_relaxed);
for (;;) {
tagged_node_handle new_tos (pool.get_handle(new_top_node), old_tos.get_tag());
end_node->next = pool.get_handle(old_tos);
if (tos.compare_exchange_weak(old_tos, new_tos))
break;
}
}
void link_nodes_unsafe(node * new_top_node, node * end_node)
{
tagged_node_handle old_tos = tos.load(detail::memory_order_relaxed);
tagged_node_handle new_tos (pool.get_handle(new_top_node), old_tos.get_tag());
end_node->next = pool.get_pointer(old_tos);
tos.store(new_tos, memory_order_relaxed);
}
template <bool Threadsafe, bool Bounded, typename ConstIterator>
tuple<node*, node*> prepare_node_list(ConstIterator begin, ConstIterator end, ConstIterator & ret)
{
ConstIterator it = begin;
node * end_node = pool.template construct<Threadsafe, Bounded>(*it++);
if (end_node == NULL) {
ret = begin;
return make_tuple<node*, node*>(NULL, NULL);
}
node * new_top_node = end_node;
end_node->next = NULL;
try {
/* link nodes */
for (; it != end; ++it) {
node * newnode = pool.template construct<Threadsafe, Bounded>(*it);
if (newnode == NULL)
break;
newnode->next = new_top_node;
new_top_node = newnode;
}
} catch (...) {
for (node * current_node = new_top_node; current_node != NULL;) {
node * next = current_node->next;
pool.template destruct<Threadsafe>(current_node);
current_node = next;
}
throw;
}
ret = it;
return make_tuple(new_top_node, end_node);
}
#endif
public:
/** Pushes object t to the stack.
*
* \post object will be pushed to the stack, if internal node can be allocated
* \returns true, if the push operation is successful.
*
* \note Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
* from the OS. This may not be lock-free.
* \throws if memory allocator throws
* */
bool push(T const & v)
{
return do_push<false>(v);
}
/** Pushes object t to the stack.
*
* \post object will be pushed to the stack, if internal node can be allocated
* \returns true, if the push operation is successful.
*
* \note Thread-safe and non-blocking. If internal memory pool is exhausted, the push operation will fail
* */
bool bounded_push(T const & v)
{
return do_push<true>(v);
}
#ifndef BOOST_DOXYGEN_INVOKED
private:
template <bool Bounded>
bool do_push(T const & v)
{
node * newnode = pool.template construct<true, Bounded>(v);
if (newnode == 0)
return false;
link_nodes_atomic(newnode, newnode);
return true;
}
template <bool Bounded, typename ConstIterator>
ConstIterator do_push(ConstIterator begin, ConstIterator end)
{
node * new_top_node;
node * end_node;
ConstIterator ret;
tie(new_top_node, end_node) = prepare_node_list<true, Bounded>(begin, end, ret);
if (new_top_node)
link_nodes_atomic(new_top_node, end_node);
return ret;
}
public:
#endif
/** Pushes as many objects from the range [begin, end) as freelist node can be allocated.
*
* \return iterator to the first element, which has not been pushed
*
* \note Operation is applied atomically
* \note Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
* from the OS. This may not be lock-free.
* \throws if memory allocator throws
*/
template <typename ConstIterator>
ConstIterator push(ConstIterator begin, ConstIterator end)
{
return do_push<false, ConstIterator>(begin, end);
}
/** Pushes as many objects from the range [begin, end) as freelist node can be allocated.
*
* \return iterator to the first element, which has not been pushed
*
* \note Operation is applied atomically
* \note Thread-safe and non-blocking. If internal memory pool is exhausted, the push operation will fail
* \throws if memory allocator throws
*/
template <typename ConstIterator>
ConstIterator bounded_push(ConstIterator begin, ConstIterator end)
{
return do_push<true, ConstIterator>(begin, end);
}
/** Pushes object t to the stack.
*
* \post object will be pushed to the stack, if internal node can be allocated
* \returns true, if the push operation is successful.
*
* \note Not thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
* from the OS. This may not be lock-free.
* \throws if memory allocator throws
* */
bool unsynchronized_push(T const & v)
{
node * newnode = pool.template construct<false, false>(v);
if (newnode == 0)
return false;
link_nodes_unsafe(newnode, newnode);
return true;
}
/** Pushes as many objects from the range [begin, end) as freelist node can be allocated.
*
* \return iterator to the first element, which has not been pushed
*
* \note Not thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
* from the OS. This may not be lock-free.
* \throws if memory allocator throws
*/
template <typename ConstIterator>
ConstIterator unsynchronized_push(ConstIterator begin, ConstIterator end)
{
node * new_top_node;
node * end_node;
ConstIterator ret;
tie(new_top_node, end_node) = prepare_node_list<false, false>(begin, end, ret);
if (new_top_node)
link_nodes_unsafe(new_top_node, end_node);
return ret;
}
/** Pops object from stack.
*
* \post if pop operation is successful, object will be copied to ret.
* \returns true, if the pop operation is successful, false if stack was empty.
*
* \note Thread-safe and non-blocking
*
* */
bool pop(T & ret)
{
return pop<T>(ret);
}
/** Pops object from stack.
*
* \pre type T must be convertible to U
* \post if pop operation is successful, object will be copied to ret.
* \returns true, if the pop operation is successful, false if stack was empty.
*
* \note Thread-safe and non-blocking
*
* */
template <typename U>
bool pop(U & ret)
{
BOOST_STATIC_ASSERT((boost::is_convertible<T, U>::value));
detail::consume_via_copy<U> consumer(ret);
return consume_one(consumer);
}
/** Pops object from stack.
*
* \post if pop operation is successful, object will be copied to ret.
* \returns true, if the pop operation is successful, false if stack was empty.
*
* \note Not thread-safe, but non-blocking
*
* */
bool unsynchronized_pop(T & ret)
{
return unsynchronized_pop<T>(ret);
}
/** Pops object from stack.
*
* \pre type T must be convertible to U
* \post if pop operation is successful, object will be copied to ret.
* \returns true, if the pop operation is successful, false if stack was empty.
*
* \note Not thread-safe, but non-blocking
*
* */
template <typename U>
bool unsynchronized_pop(U & ret)
{
BOOST_STATIC_ASSERT((boost::is_convertible<T, U>::value));
tagged_node_handle old_tos = tos.load(detail::memory_order_relaxed);
node * old_tos_pointer = pool.get_pointer(old_tos);
if (!pool.get_pointer(old_tos))
return false;
node * new_tos_ptr = pool.get_pointer(old_tos_pointer->next);
tagged_node_handle new_tos(pool.get_handle(new_tos_ptr), old_tos.get_next_tag());
tos.store(new_tos, memory_order_relaxed);
detail::copy_payload(old_tos_pointer->v, ret);
pool.template destruct<false>(old_tos);
return true;
}
/** consumes one element via a functor
*
* pops one element from the stack and applies the functor on this object
*
* \returns true, if one element was consumed
*
* \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
* */
template <typename Functor>
bool consume_one(Functor & f)
{
tagged_node_handle old_tos = tos.load(detail::memory_order_consume);
for (;;) {
node * old_tos_pointer = pool.get_pointer(old_tos);
if (!old_tos_pointer)
return false;
tagged_node_handle new_tos(old_tos_pointer->next, old_tos.get_next_tag());
if (tos.compare_exchange_weak(old_tos, new_tos)) {
f(old_tos_pointer->v);
pool.template destruct<true>(old_tos);
return true;
}
}
}
/// \copydoc boost::lockfree::stack::consume_one(Functor & rhs)
template <typename Functor>
bool consume_one(Functor const & f)
{
tagged_node_handle old_tos = tos.load(detail::memory_order_consume);
for (;;) {
node * old_tos_pointer = pool.get_pointer(old_tos);
if (!old_tos_pointer)
return false;
tagged_node_handle new_tos(old_tos_pointer->next, old_tos.get_next_tag());
if (tos.compare_exchange_weak(old_tos, new_tos)) {
f(old_tos_pointer->v);
pool.template destruct<true>(old_tos);
return true;
}
}
}
/** consumes all elements via a functor
*
* sequentially pops all elements from the stack and applies the functor on each object
*
* \returns number of elements that are consumed
*
* \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
* */
template <typename Functor>
size_t consume_all(Functor & f)
{
size_t element_count = 0;
while (consume_one(f))
element_count += 1;
return element_count;
}
/// \copydoc boost::lockfree::stack::consume_all(Functor & rhs)
template <typename Functor>
size_t consume_all(Functor const & f)
{
size_t element_count = 0;
while (consume_one(f))
element_count += 1;
return element_count;
}
/**
* \return true, if stack is empty.
*
* \note It only guarantees that at some point during the execution of the function the stack has been empty.
* It is rarely practical to use this value in program logic, because the stack can be modified by other threads.
* */
bool empty(void) const
{
return pool.get_pointer(tos.load()) == NULL;
}
private:
#ifndef BOOST_DOXYGEN_INVOKED
detail::atomic<tagged_node_handle> tos;
static const int padding_size = BOOST_LOCKFREE_CACHELINE_BYTES - sizeof(tagged_node_handle);
char padding[padding_size];
pool_t pool;
#endif
};
} /* namespace lockfree */
} /* namespace boost */
#endif /* BOOST_LOCKFREE_STACK_HPP_INCLUDED */