boost/intrusive/detail/utilities.hpp
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2006-2013
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_DETAIL_UTILITIES_HPP
#define BOOST_INTRUSIVE_DETAIL_UTILITIES_HPP
#include <boost/intrusive/detail/config_begin.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/intrusive/detail/parent_from_member.hpp>
#include <boost/intrusive/detail/ebo_functor_holder.hpp>
#include <boost/intrusive/link_mode.hpp>
#include <boost/intrusive/detail/mpl.hpp>
#include <boost/intrusive/detail/assert.hpp>
#include <boost/intrusive/detail/is_stateful_value_traits.hpp>
#include <boost/intrusive/detail/memory_util.hpp>
#include <boost/cstdint.hpp>
#include <cstddef>
#include <climits>
#include <iterator>
#include <boost/cstdint.hpp>
#include <boost/static_assert.hpp>
#include <boost/detail/no_exceptions_support.hpp>
#include <functional>
#include <boost/functional/hash.hpp>
#include <boost/tti/tti.hpp>
namespace boost {
namespace intrusive {
enum algo_types
{
CircularListAlgorithms,
CircularSListAlgorithms,
LinearSListAlgorithms,
BsTreeAlgorithms,
RbTreeAlgorithms,
AvlTreeAlgorithms,
SgTreeAlgorithms,
SplayTreeAlgorithms,
TreapAlgorithms
};
template<algo_types AlgoType, class NodeTraits>
struct get_algo;
template <link_mode_type link_mode>
struct is_safe_autounlink
{
static const bool value =
(int)link_mode == (int)auto_unlink ||
(int)link_mode == (int)safe_link;
};
namespace detail {
template <class T>
struct internal_member_value_traits
{
template <class U> static detail::one test(...);
template <class U> static detail::two test(typename U::member_value_traits* = 0);
static const bool value = sizeof(test<T>(0)) == sizeof(detail::two);
};
#define BOOST_INTRUSIVE_INTERNAL_STATIC_BOOL_IS_TRUE(TRAITS_PREFIX, TYPEDEF_TO_FIND) \
template <class T>\
struct TRAITS_PREFIX##_bool\
{\
template<bool Add>\
struct two_or_three {one _[2 + Add];};\
template <class U> static one test(...);\
template <class U> static two_or_three<U::TYPEDEF_TO_FIND> test (int);\
static const std::size_t value = sizeof(test<T>(0));\
};\
\
template <class T>\
struct TRAITS_PREFIX##_bool_is_true\
{\
static const bool value = TRAITS_PREFIX##_bool<T>::value > sizeof(one)*2;\
};\
//
BOOST_INTRUSIVE_INTERNAL_STATIC_BOOL_IS_TRUE(internal_base_hook, hooktags::is_base_hook)
BOOST_INTRUSIVE_INTERNAL_STATIC_BOOL_IS_TRUE(internal_any_hook, is_any_hook)
BOOST_INTRUSIVE_INTERNAL_STATIC_BOOL_IS_TRUE(resizable, resizable)
template <class T>
inline T* to_raw_pointer(T* p)
{ return p; }
template <class Pointer>
inline typename boost::intrusive::pointer_traits<Pointer>::element_type*
to_raw_pointer(const Pointer &p)
{ return boost::intrusive::detail::to_raw_pointer(p.operator->()); }
//This functor compares a stored value
//and the one passed as an argument
template<class ConstReference>
class equal_to_value
{
ConstReference t_;
public:
equal_to_value(ConstReference t)
: t_(t)
{}
bool operator()(ConstReference t)const
{ return t_ == t; }
};
class null_disposer
{
public:
template <class Pointer>
void operator()(Pointer)
{}
};
template<class NodeAlgorithms>
class init_disposer
{
typedef typename NodeAlgorithms::node_ptr node_ptr;
public:
void operator()(const node_ptr & p)
{ NodeAlgorithms::init(p); }
};
template<bool ConstantSize, class SizeType, class Tag = void>
struct size_holder
{
static const bool constant_time_size = ConstantSize;
typedef SizeType size_type;
SizeType get_size() const
{ return size_; }
void set_size(SizeType size)
{ size_ = size; }
void decrement()
{ --size_; }
void increment()
{ ++size_; }
void increase(SizeType n)
{ size_ += n; }
void decrease(SizeType n)
{ size_ -= n; }
SizeType size_;
};
template<class SizeType, class Tag>
struct size_holder<false, SizeType, Tag>
{
static const bool constant_time_size = false;
typedef SizeType size_type;
size_type get_size() const
{ return 0; }
void set_size(size_type)
{}
void decrement()
{}
void increment()
{}
void increase(SizeType)
{}
void decrease(SizeType)
{}
};
template<class KeyValueCompare, class ValueTraits>
struct key_nodeptr_comp
: private detail::ebo_functor_holder<KeyValueCompare>
{
typedef ValueTraits value_traits;
typedef typename value_traits::value_type value_type;
typedef typename value_traits::node_ptr node_ptr;
typedef typename value_traits::const_node_ptr const_node_ptr;
typedef detail::ebo_functor_holder<KeyValueCompare> base_t;
key_nodeptr_comp(KeyValueCompare kcomp, const ValueTraits *traits)
: base_t(kcomp), traits_(traits)
{}
template<class T>
struct is_node_ptr
{
static const bool value = is_same<T, const_node_ptr>::value || is_same<T, node_ptr>::value;
};
template<class T>
const value_type & key_forward
(const T &node, typename enable_if_c<is_node_ptr<T>::value>::type * = 0) const
{ return *traits_->to_value_ptr(node); }
template<class T>
const T & key_forward(const T &key, typename enable_if_c<!is_node_ptr<T>::value>::type* = 0) const
{ return key; }
template<class KeyType, class KeyType2>
bool operator()(const KeyType &key1, const KeyType2 &key2) const
{ return base_t::get()(this->key_forward(key1), this->key_forward(key2)); }
const ValueTraits *const traits_;
};
template<class F, class ValueTraits, algo_types AlgoType>
struct node_cloner
: private detail::ebo_functor_holder<F>
{
typedef ValueTraits value_traits;
typedef typename value_traits::node_traits node_traits;
typedef typename node_traits::node_ptr node_ptr;
typedef detail::ebo_functor_holder<F> base_t;
typedef typename get_algo< AlgoType
, node_traits>::type node_algorithms;
static const bool safemode_or_autounlink =
is_safe_autounlink<value_traits::link_mode>::value;
typedef typename value_traits::value_type value_type;
typedef typename value_traits::pointer pointer;
typedef typename node_traits::node node;
typedef typename value_traits::const_node_ptr const_node_ptr;
typedef typename value_traits::reference reference;
typedef typename value_traits::const_reference const_reference;
node_cloner(F f, const ValueTraits *traits)
: base_t(f), traits_(traits)
{}
// tree-based containers use this method, which is proxy-reference friendly
node_ptr operator()(const node_ptr & p)
{
const_reference v = *traits_->to_value_ptr(p);
node_ptr n = traits_->to_node_ptr(*base_t::get()(v));
//Cloned node must be in default mode if the linking mode requires it
if(safemode_or_autounlink)
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(n));
return n;
}
// hashtables use this method, which is proxy-reference unfriendly
node_ptr operator()(const node &to_clone)
{
const value_type &v =
*traits_->to_value_ptr
(pointer_traits<const_node_ptr>::pointer_to(to_clone));
node_ptr n = traits_->to_node_ptr(*base_t::get()(v));
//Cloned node must be in default mode if the linking mode requires it
if(safemode_or_autounlink)
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(n));
return n;
}
const ValueTraits * const traits_;
};
template<class F, class ValueTraits, algo_types AlgoType>
struct node_disposer
: private detail::ebo_functor_holder<F>
{
typedef ValueTraits value_traits;
typedef typename value_traits::node_traits node_traits;
typedef typename node_traits::node_ptr node_ptr;
typedef detail::ebo_functor_holder<F> base_t;
typedef typename get_algo< AlgoType
, node_traits>::type node_algorithms;
static const bool safemode_or_autounlink =
is_safe_autounlink<value_traits::link_mode>::value;
node_disposer(F f, const ValueTraits *cont)
: base_t(f), traits_(cont)
{}
void operator()(const node_ptr & p)
{
if(safemode_or_autounlink)
node_algorithms::init(p);
base_t::get()(traits_->to_value_ptr(p));
}
const ValueTraits * const traits_;
};
template<class VoidPointer>
struct dummy_constptr
{
typedef typename boost::intrusive::pointer_traits<VoidPointer>::
template rebind_pointer<const void>::type ConstVoidPtr;
explicit dummy_constptr(ConstVoidPtr)
{}
dummy_constptr()
{}
ConstVoidPtr get_ptr() const
{ return ConstVoidPtr(); }
};
template<class VoidPointer>
struct constptr
{
typedef typename boost::intrusive::pointer_traits<VoidPointer>::
template rebind_pointer<const void>::type ConstVoidPtr;
constptr()
{}
explicit constptr(const ConstVoidPtr &ptr)
: const_void_ptr_(ptr)
{}
const void *get_ptr() const
{ return boost::intrusive::detail::to_raw_pointer(const_void_ptr_); }
ConstVoidPtr const_void_ptr_;
};
template <class VoidPointer, bool store_ptr>
struct select_constptr
{
typedef typename detail::if_c
< store_ptr
, constptr<VoidPointer>
, dummy_constptr<VoidPointer>
>::type type;
};
template<class T, bool Add>
struct add_const_if_c
{
typedef typename detail::if_c
< Add
, typename detail::add_const<T>::type
, T
>::type type;
};
template <link_mode_type LinkMode>
struct link_dispatch
{};
template<class Hook>
void destructor_impl(Hook &hook, detail::link_dispatch<safe_link>)
{ //If this assertion raises, you might have destroyed an object
//while it was still inserted in a container that is alive.
//If so, remove the object from the container before destroying it.
(void)hook; BOOST_INTRUSIVE_SAFE_HOOK_DESTRUCTOR_ASSERT(!hook.is_linked());
}
template<class Hook>
void destructor_impl(Hook &hook, detail::link_dispatch<auto_unlink>)
{ hook.unlink(); }
template<class Hook>
void destructor_impl(Hook &, detail::link_dispatch<normal_link>)
{}
///////////////////////////
// floor_log2 Dispatcher
////////////////////////////
#if defined(_MSC_VER) && (_MSC_VER >= 1300)
}}} //namespace boost::intrusive::detail
//Use _BitScanReverseXX intrinsics
#if defined(_M_X64) || defined(_M_AMD64) || defined(_M_IA64) //64 bit target
#define BOOST_INTRUSIVE_BSR_INTRINSIC_64_BIT
#endif
#ifndef __INTRIN_H_ // Avoid including any windows system header
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
#if defined(BOOST_INTRUSIVE_BSR_INTRINSIC_64_BIT) //64 bit target
unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);
#pragma intrinsic(_BitScanReverse64)
#else //32 bit target
unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
#pragma intrinsic(_BitScanReverse)
#endif
#ifdef __cplusplus
}
#endif // __cplusplus
#endif // __INTRIN_H_
#ifdef BOOST_INTRUSIVE_BSR_INTRINSIC_64_BIT
#define BOOST_INTRUSIVE_BSR_INTRINSIC _BitScanReverse64
#undef BOOST_INTRUSIVE_BSR_INTRINSIC_64_BIT
#else
#define BOOST_INTRUSIVE_BSR_INTRINSIC _BitScanReverse
#endif
namespace boost {
namespace intrusive {
namespace detail {
inline std::size_t floor_log2 (std::size_t x)
{
unsigned long log2;
BOOST_INTRUSIVE_BSR_INTRINSIC( &log2, (unsigned long)x );
return log2;
}
#undef BOOST_INTRUSIVE_BSR_INTRINSIC
#elif defined(__GNUC__) && ((__GNUC__ >= 4) || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)) //GCC >=3.4
//Compile-time error in case of missing specialization
template<class Uint>
struct builtin_clz_dispatch;
#if defined(BOOST_HAS_LONG_LONG)
template<>
struct builtin_clz_dispatch<unsigned long long>
{
static unsigned long long call(unsigned long long n)
{ return __builtin_clzll(n); }
};
#endif
template<>
struct builtin_clz_dispatch<unsigned long>
{
static unsigned long call(unsigned long n)
{ return __builtin_clzl(n); }
};
template<>
struct builtin_clz_dispatch<unsigned int>
{
static unsigned int call(unsigned int n)
{ return __builtin_clz(n); }
};
inline std::size_t floor_log2(std::size_t n)
{
return sizeof(std::size_t)*CHAR_BIT - std::size_t(1) - builtin_clz_dispatch<std::size_t>::call(n);
}
#else //Portable methods
////////////////////////////
// Generic method
////////////////////////////
inline std::size_t floor_log2_get_shift(std::size_t n, true_ )//power of two size_t
{ return n >> 1; }
inline std::size_t floor_log2_get_shift(std::size_t n, false_ )//non-power of two size_t
{ return (n >> 1) + ((n & 1u) & (n != 1)); }
template<std::size_t N>
inline std::size_t floor_log2 (std::size_t x, integer<std::size_t, N>)
{
const std::size_t Bits = N;
const bool Size_t_Bits_Power_2= !(Bits & (Bits-1));
std::size_t n = x;
std::size_t log2 = 0;
std::size_t remaining_bits = Bits;
std::size_t shift = floor_log2_get_shift(remaining_bits, bool_<Size_t_Bits_Power_2>());
while(shift){
std::size_t tmp = n >> shift;
if (tmp){
log2 += shift, n = tmp;
}
shift = floor_log2_get_shift(shift, bool_<Size_t_Bits_Power_2>());
}
return log2;
}
////////////////////////////
// DeBruijn method
////////////////////////////
//Taken from:
//http://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers
//Thanks to Desmond Hume
inline std::size_t floor_log2 (std::size_t v, integer<std::size_t, 32>)
{
static const int MultiplyDeBruijnBitPosition[32] =
{
0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30,
8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31
};
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return MultiplyDeBruijnBitPosition[(std::size_t)(v * 0x07C4ACDDU) >> 27];
}
inline std::size_t floor_log2 (std::size_t v, integer<std::size_t, 64>)
{
static const std::size_t MultiplyDeBruijnBitPosition[64] = {
63, 0, 58, 1, 59, 47, 53, 2,
60, 39, 48, 27, 54, 33, 42, 3,
61, 51, 37, 40, 49, 18, 28, 20,
55, 30, 34, 11, 43, 14, 22, 4,
62, 57, 46, 52, 38, 26, 32, 41,
50, 36, 17, 19, 29, 10, 13, 21,
56, 45, 25, 31, 35, 16, 9, 12,
44, 24, 15, 8, 23, 7, 6, 5};
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v |= v >> 32;
return MultiplyDeBruijnBitPosition[((std::size_t)((v - (v >> 1))*0x07EDD5E59A4E28C2ULL)) >> 58];
}
inline std::size_t floor_log2 (std::size_t x)
{
const std::size_t Bits = sizeof(std::size_t)*CHAR_BIT;
return floor_log2(x, integer<std::size_t, Bits>());
}
#endif
//Thanks to Laurent de Soras in
//http://www.flipcode.com/archives/Fast_log_Function.shtml
inline float fast_log2 (float val)
{
union caster_t
{
boost::uint32_t x;
float val;
} caster;
caster.val = val;
boost::uint32_t x = caster.x;
const int log_2 = int((x >> 23) & 255) - 128;
x &= ~(boost::uint32_t(255u) << 23u);
x += boost::uint32_t(127) << 23u;
caster.x = x;
val = caster.val;
//1+log2(m), m ranging from 1 to 2
//3rd degree polynomial keeping first derivate continuity.
//For less precision the line can be commented out
val = ((-1.f/3.f) * val + 2.f) * val - (2.f/3.f);
return (val + log_2);
}
inline std::size_t ceil_log2 (std::size_t x)
{
return static_cast<std::size_t>((x & (x-1)) != 0) + floor_log2(x);
}
template<class SizeType, std::size_t N>
struct numbits_eq
{
static const bool value = sizeof(SizeType)*CHAR_BIT == N;
};
template<class SizeType, class Enabler = void >
struct sqrt2_pow_max;
template <class SizeType>
struct sqrt2_pow_max<SizeType, typename enable_if< numbits_eq<SizeType, 32> >::type>
{
static const boost::uint32_t value = 0xb504f334;
static const std::size_t pow = 31;
};
#ifndef BOOST_NO_INT64_T
template <class SizeType>
struct sqrt2_pow_max<SizeType, typename enable_if< numbits_eq<SizeType, 64> >::type>
{
static const boost::uint64_t value = 0xb504f333f9de6484ull;
static const std::size_t pow = 63;
};
#endif //BOOST_NO_INT64_T
// Returns floor(pow(sqrt(2), x * 2 + 1)).
// Defined for X from 0 up to the number of bits in size_t minus 1.
inline std::size_t sqrt2_pow_2xplus1 (std::size_t x)
{
const std::size_t value = (std::size_t)sqrt2_pow_max<std::size_t>::value;
const std::size_t pow = (std::size_t)sqrt2_pow_max<std::size_t>::pow;
return (value >> (pow - x)) + 1;
}
template<class Container, class Disposer>
class exception_disposer
{
Container *cont_;
Disposer &disp_;
exception_disposer(const exception_disposer&);
exception_disposer &operator=(const exception_disposer&);
public:
exception_disposer(Container &cont, Disposer &disp)
: cont_(&cont), disp_(disp)
{}
void release()
{ cont_ = 0; }
~exception_disposer()
{
if(cont_){
cont_->clear_and_dispose(disp_);
}
}
};
template<class Container, class Disposer, class SizeType>
class exception_array_disposer
{
Container *cont_;
Disposer &disp_;
SizeType &constructed_;
exception_array_disposer(const exception_array_disposer&);
exception_array_disposer &operator=(const exception_array_disposer&);
public:
exception_array_disposer
(Container &cont, Disposer &disp, SizeType &constructed)
: cont_(&cont), disp_(disp), constructed_(constructed)
{}
void release()
{ cont_ = 0; }
~exception_array_disposer()
{
SizeType n = constructed_;
if(cont_){
while(n--){
cont_[n].clear_and_dispose(disp_);
}
}
}
};
template<class ValueTraits, bool IsConst>
struct node_to_value
: public detail::select_constptr
< typename pointer_traits
<typename ValueTraits::pointer>::template rebind_pointer<void>::type
, is_stateful_value_traits<ValueTraits>::value
>::type
{
static const bool stateful_value_traits = is_stateful_value_traits<ValueTraits>::value;
typedef typename detail::select_constptr
< typename pointer_traits
<typename ValueTraits::pointer>::
template rebind_pointer<void>::type
, stateful_value_traits >::type Base;
typedef ValueTraits value_traits;
typedef typename value_traits::value_type value_type;
typedef typename value_traits::node_traits::node node;
typedef typename detail::add_const_if_c
<value_type, IsConst>::type vtype;
typedef typename detail::add_const_if_c
<node, IsConst>::type ntype;
typedef typename pointer_traits
<typename ValueTraits::pointer>::
template rebind_pointer<ntype>::type npointer;
typedef typename pointer_traits<npointer>::
template rebind_pointer<const ValueTraits>::type const_value_traits_ptr;
node_to_value(const const_value_traits_ptr &ptr)
: Base(ptr)
{}
typedef vtype & result_type;
typedef ntype & first_argument_type;
const_value_traits_ptr get_value_traits() const
{ return pointer_traits<const_value_traits_ptr>::static_cast_from(Base::get_ptr()); }
result_type to_value(first_argument_type arg, false_) const
{ return *(value_traits::to_value_ptr(pointer_traits<npointer>::pointer_to(arg))); }
result_type to_value(first_argument_type arg, true_) const
{ return *(this->get_value_traits()->to_value_ptr(pointer_traits<npointer>::pointer_to(arg))); }
result_type operator()(first_argument_type arg) const
{ return this->to_value(arg, bool_<stateful_value_traits>()); }
};
//This is not standard, but should work with all compilers
union max_align
{
char char_;
short short_;
int int_;
long long_;
#ifdef BOOST_HAS_LONG_LONG
long long long_long_;
#endif
float float_;
double double_;
long double long_double_;
void * void_ptr_;
};
template<class T, std::size_t N>
class array_initializer
{
public:
template<class CommonInitializer>
array_initializer(const CommonInitializer &init)
{
char *init_buf = (char*)rawbuf;
std::size_t i = 0;
BOOST_TRY{
for(; i != N; ++i){
new(init_buf)T(init);
init_buf += sizeof(T);
}
}
BOOST_CATCH(...){
while(i--){
init_buf -= sizeof(T);
((T*)init_buf)->~T();
}
BOOST_RETHROW;
}
BOOST_CATCH_END
}
operator T* ()
{ return (T*)(rawbuf); }
operator const T*() const
{ return (const T*)(rawbuf); }
~array_initializer()
{
char *init_buf = (char*)rawbuf + N*sizeof(T);
for(std::size_t i = 0; i != N; ++i){
init_buf -= sizeof(T);
((T*)init_buf)->~T();
}
}
private:
detail::max_align rawbuf[(N*sizeof(T)-1)/sizeof(detail::max_align)+1];
};
template<class It>
class reverse_iterator
: public std::iterator<
typename std::iterator_traits<It>::iterator_category,
typename std::iterator_traits<It>::value_type,
typename std::iterator_traits<It>::difference_type,
typename std::iterator_traits<It>::pointer,
typename std::iterator_traits<It>::reference>
{
public:
typedef typename std::iterator_traits<It>::pointer pointer;
typedef typename std::iterator_traits<It>::reference reference;
typedef typename std::iterator_traits<It>::difference_type difference_type;
typedef It iterator_type;
reverse_iterator(){}
explicit reverse_iterator(It r)
: m_current(r)
{}
template<class OtherIt>
reverse_iterator(const reverse_iterator<OtherIt>& r)
: m_current(r.base())
{}
It base() const
{ return m_current; }
reference operator*() const
{ It temp(m_current); --temp; return *temp; }
pointer operator->() const
{ It temp(m_current); --temp; return temp.operator->(); }
reference operator[](difference_type off) const
{ return this->m_current[-off]; }
reverse_iterator& operator++()
{ --m_current; return *this; }
reverse_iterator operator++(int)
{
reverse_iterator temp = *this;
--m_current;
return temp;
}
reverse_iterator& operator--()
{
++m_current;
return *this;
}
reverse_iterator operator--(int)
{
reverse_iterator temp(*this);
++m_current;
return temp;
}
friend bool operator==(const reverse_iterator& l, const reverse_iterator& r)
{ return l.m_current == r.m_current; }
friend bool operator!=(const reverse_iterator& l, const reverse_iterator& r)
{ return l.m_current != r.m_current; }
friend bool operator<(const reverse_iterator& l, const reverse_iterator& r)
{ return l.m_current < r.m_current; }
friend bool operator<=(const reverse_iterator& l, const reverse_iterator& r)
{ return l.m_current <= r.m_current; }
friend bool operator>(const reverse_iterator& l, const reverse_iterator& r)
{ return l.m_current > r.m_current; }
friend bool operator>=(const reverse_iterator& l, const reverse_iterator& r)
{ return l.m_current >= r.m_current; }
reverse_iterator& operator+=(difference_type off)
{ m_current -= off; return *this; }
friend reverse_iterator operator+(const reverse_iterator & l, difference_type off)
{
reverse_iterator tmp(l.m_current);
tmp.m_current -= off;
return tmp;
}
reverse_iterator& operator-=(difference_type off)
{ m_current += off; return *this; }
friend reverse_iterator operator-(const reverse_iterator & l, difference_type off)
{
reverse_iterator tmp(l.m_current);
tmp.m_current += off;
return tmp;
}
friend difference_type operator-(const reverse_iterator& l, const reverse_iterator& r)
{ return r.m_current - l.m_current; }
private:
It m_current; // the wrapped iterator
};
template<class ConstNodePtr>
struct uncast_types
{
typedef typename pointer_traits<ConstNodePtr>::element_type element_type;
typedef typename remove_const<element_type>::type non_const_type;
typedef typename pointer_traits<ConstNodePtr>::
template rebind_pointer<non_const_type>::type non_const_pointer;
typedef pointer_traits<non_const_pointer> non_const_traits;
};
template<class ConstNodePtr>
static typename uncast_types<ConstNodePtr>::non_const_pointer
uncast(const ConstNodePtr & ptr)
{
return uncast_types<ConstNodePtr>::non_const_traits::const_cast_from(ptr);
}
// trivial header node holder
template < typename NodeTraits >
struct default_header_holder : public NodeTraits::node
{
typedef NodeTraits node_traits;
typedef typename node_traits::node node;
typedef typename node_traits::node_ptr node_ptr;
typedef typename node_traits::const_node_ptr const_node_ptr;
default_header_holder() : node() {}
const_node_ptr get_node() const
{ return pointer_traits< const_node_ptr >::pointer_to(*static_cast< const node* >(this)); }
node_ptr get_node()
{ return pointer_traits< node_ptr >::pointer_to(*static_cast< node* >(this)); }
// (unsafe) downcast used to implement container-from-iterator
static default_header_holder* get_holder(const node_ptr &p)
{ return static_cast< default_header_holder* >(boost::intrusive::detail::to_raw_pointer(p)); }
};
// type function producing the header node holder
template < typename Value_Traits, typename HeaderHolder >
struct get_header_holder_type
{
typedef HeaderHolder type;
};
template < typename Value_Traits >
struct get_header_holder_type< Value_Traits, void >
{
typedef default_header_holder< typename Value_Traits::node_traits > type;
};
} //namespace detail
template<class Node, class Tag, unsigned int>
struct node_holder
: public Node
{};
template<class T, class NodePtr, class Tag, unsigned int Type>
struct bhtraits_base
{
public:
typedef NodePtr node_ptr;
typedef typename pointer_traits<node_ptr>::element_type node;
typedef node_holder<node, Tag, Type> node_holder_type;
typedef T value_type;
typedef typename pointer_traits<node_ptr>::
template rebind_pointer<const node>::type const_node_ptr;
typedef typename pointer_traits<node_ptr>::
template rebind_pointer<T>::type pointer;
typedef typename pointer_traits<node_ptr>::
template rebind_pointer<const T>::type const_pointer;
//typedef typename pointer_traits<pointer>::reference reference;
//typedef typename pointer_traits<const_pointer>::reference const_reference;
typedef T & reference;
typedef const T & const_reference;
typedef node_holder_type & node_holder_reference;
typedef const node_holder_type & const_node_holder_reference;
typedef node& node_reference;
typedef const node & const_node_reference;
static pointer to_value_ptr(const node_ptr & n)
{
return pointer_traits<pointer>::pointer_to
(static_cast<reference>(static_cast<node_holder_reference>(*n)));
}
static const_pointer to_value_ptr(const const_node_ptr & n)
{
return pointer_traits<const_pointer>::pointer_to
(static_cast<const_reference>(static_cast<const_node_holder_reference>(*n)));
}
static node_ptr to_node_ptr(reference value)
{
return pointer_traits<node_ptr>::pointer_to
(static_cast<node_reference>(static_cast<node_holder_reference>(value)));
}
static const_node_ptr to_node_ptr(const_reference value)
{
return pointer_traits<const_node_ptr>::pointer_to
(static_cast<const_node_reference>(static_cast<const_node_holder_reference>(value)));
}
};
template<class T, class NodeTraits, link_mode_type LinkMode, class Tag, unsigned int Type>
struct bhtraits
: public bhtraits_base<T, typename NodeTraits::node_ptr, Tag, Type>
{
static const link_mode_type link_mode = LinkMode;
typedef NodeTraits node_traits;
};
/*
template<class T, class NodePtr, typename pointer_traits<NodePtr>::element_type T::* P>
struct mhtraits_base
{
public:
typedef typename pointer_traits<NodePtr>::element_type node;
typedef T value_type;
typedef NodePtr node_ptr;
typedef typename pointer_traits<node_ptr>::
template rebind_pointer<const node>::type const_node_ptr;
typedef typename pointer_traits<node_ptr>::
template rebind_pointer<T>::type pointer;
typedef typename pointer_traits<node_ptr>::
template rebind_pointer<const T>::type const_pointer;
typedef T & reference;
typedef const T & const_reference;
typedef node& node_reference;
typedef const node & const_node_reference;
static node_ptr to_node_ptr(reference value)
{
return pointer_traits<node_ptr>::pointer_to
(static_cast<node_reference>(value.*P));
}
static const_node_ptr to_node_ptr(const_reference value)
{
return pointer_traits<const_node_ptr>::pointer_to
(static_cast<const_node_reference>(value.*P));
}
static pointer to_value_ptr(const node_ptr & n)
{
return pointer_traits<pointer>::pointer_to
(*detail::parent_from_member<T, node>
(boost::intrusive::detail::to_raw_pointer(n), P));
}
static const_pointer to_value_ptr(const const_node_ptr & n)
{
return pointer_traits<const_pointer>::pointer_to
(*detail::parent_from_member<T, node>
(boost::intrusive::detail::to_raw_pointer(n), P));
}
};
template<class T, class NodeTraits, typename NodeTraits::node T::* P, link_mode_type LinkMode>
struct mhtraits
: public mhtraits_base<T, typename NodeTraits::node_ptr, P>
{
static const link_mode_type link_mode = LinkMode;
typedef NodeTraits node_traits;
};
*/
template<class T, class Hook, Hook T::* P>
struct mhtraits
{
public:
typedef Hook hook_type;
typedef typename hook_type::hooktags::node_traits node_traits;
typedef typename node_traits::node node;
typedef T value_type;
typedef typename node_traits::node_ptr node_ptr;
typedef typename node_traits::const_node_ptr const_node_ptr;
typedef typename pointer_traits<node_ptr>::
template rebind_pointer<T>::type pointer;
typedef typename pointer_traits<node_ptr>::
template rebind_pointer<const T>::type const_pointer;
typedef T & reference;
typedef const T & const_reference;
typedef node& node_reference;
typedef const node & const_node_reference;
typedef hook_type& hook_reference;
typedef const hook_type & const_hook_reference;
static const link_mode_type link_mode = Hook::hooktags::link_mode;
static node_ptr to_node_ptr(reference value)
{
return pointer_traits<node_ptr>::pointer_to
(static_cast<node_reference>(static_cast<hook_reference>(value.*P)));
}
static const_node_ptr to_node_ptr(const_reference value)
{
return pointer_traits<const_node_ptr>::pointer_to
(static_cast<const_node_reference>(static_cast<const_hook_reference>(value.*P)));
}
static pointer to_value_ptr(const node_ptr & n)
{
return pointer_traits<pointer>::pointer_to
(*detail::parent_from_member<T, Hook>
(static_cast<Hook*>(boost::intrusive::detail::to_raw_pointer(n)), P));
}
static const_pointer to_value_ptr(const const_node_ptr & n)
{
return pointer_traits<const_pointer>::pointer_to
(*detail::parent_from_member<T, Hook>
(static_cast<const Hook*>(boost::intrusive::detail::to_raw_pointer(n)), P));
}
};
template<class Functor>
struct fhtraits
{
public:
typedef typename Functor::hook_type hook_type;
typedef typename Functor::hook_ptr hook_ptr;
typedef typename Functor::const_hook_ptr const_hook_ptr;
typedef typename hook_type::hooktags::node_traits node_traits;
typedef typename node_traits::node node;
typedef typename Functor::value_type value_type;
typedef typename node_traits::node_ptr node_ptr;
typedef typename node_traits::const_node_ptr const_node_ptr;
typedef typename pointer_traits<node_ptr>::
template rebind_pointer<value_type>::type pointer;
typedef typename pointer_traits<node_ptr>::
template rebind_pointer<const value_type>::type const_pointer;
typedef value_type & reference;
typedef const value_type & const_reference;
static const link_mode_type link_mode = hook_type::hooktags::link_mode;
static node_ptr to_node_ptr(reference value)
{ return static_cast<node*>(boost::intrusive::detail::to_raw_pointer(Functor::to_hook_ptr(value))); }
static const_node_ptr to_node_ptr(const_reference value)
{ return static_cast<const node*>(boost::intrusive::detail::to_raw_pointer(Functor::to_hook_ptr(value))); }
static pointer to_value_ptr(const node_ptr & n)
{ return Functor::to_value_ptr(to_hook_ptr(n)); }
static const_pointer to_value_ptr(const const_node_ptr & n)
{ return Functor::to_value_ptr(to_hook_ptr(n)); }
private:
static hook_ptr to_hook_ptr(const node_ptr & n)
{ return hook_ptr(&*static_cast<hook_type*>(&*n)); }
static const_hook_ptr to_hook_ptr(const const_node_ptr & n)
{ return const_hook_ptr(&*static_cast<const hook_type*>(&*n)); }
};
template<class ValueTraits>
struct value_traits_pointers
{
typedef BOOST_INTRUSIVE_OBTAIN_TYPE_WITH_DEFAULT
(boost::intrusive::detail::
, ValueTraits, value_traits_ptr
, typename pointer_traits<typename ValueTraits::node_traits::node_ptr>::template
rebind_pointer<ValueTraits>::type) value_traits_ptr;
typedef typename pointer_traits<value_traits_ptr>::template
rebind_pointer<ValueTraits const>::type const_value_traits_ptr;
};
template<class ValueTraits, bool IsConst, class Category>
struct iiterator
{
typedef ValueTraits value_traits;
typedef typename value_traits::node_traits node_traits;
typedef typename node_traits::node node;
typedef typename node_traits::node_ptr node_ptr;
typedef ::boost::intrusive::pointer_traits<node_ptr> nodepointer_traits_t;
typedef typename nodepointer_traits_t::template
rebind_pointer<void>::type void_pointer;
typedef typename ValueTraits::value_type value_type;
typedef typename ValueTraits::pointer nonconst_pointer;
typedef typename ValueTraits::const_pointer yesconst_pointer;
typedef typename ::boost::intrusive::pointer_traits
<nonconst_pointer>::reference nonconst_reference;
typedef typename ::boost::intrusive::pointer_traits
<yesconst_pointer>::reference yesconst_reference;
typedef typename nodepointer_traits_t::difference_type difference_type;
typedef typename detail::if_c
<IsConst, yesconst_pointer, nonconst_pointer>::type pointer;
typedef typename detail::if_c
<IsConst, yesconst_reference, nonconst_reference>::type reference;
typedef std::iterator
< Category
, value_type
, difference_type
, pointer
, reference
> iterator_traits;
typedef typename value_traits_pointers
<ValueTraits>::value_traits_ptr value_traits_ptr;
typedef typename value_traits_pointers
<ValueTraits>::const_value_traits_ptr const_value_traits_ptr;
static const bool stateful_value_traits =
detail::is_stateful_value_traits<value_traits>::value;
};
template<class NodePtr, class StoredPointer, bool StatefulValueTraits = true>
struct iiterator_members
{
iiterator_members()
{}
iiterator_members(const NodePtr &n_ptr, const StoredPointer &data)
: nodeptr_(n_ptr), ptr_(data)
{}
StoredPointer get_ptr() const
{ return ptr_; }
NodePtr nodeptr_;
StoredPointer ptr_;
};
template<class NodePtr, class StoredPointer>
struct iiterator_members<NodePtr, StoredPointer, false>
{
iiterator_members()
{}
iiterator_members(const NodePtr &n_ptr, const StoredPointer &)
: nodeptr_(n_ptr)
{}
StoredPointer get_ptr() const
{ return StoredPointer(); }
NodePtr nodeptr_;
};
template<class Less, class T>
struct get_less
{
typedef Less type;
};
template<class T>
struct get_less<void, T>
{
typedef ::std::less<T> type;
};
template<class EqualTo, class T>
struct get_equal_to
{
typedef EqualTo type;
};
template<class T>
struct get_equal_to<void, T>
{
typedef ::std::equal_to<T> type;
};
template<class Hash, class T>
struct get_hash
{
typedef Hash type;
};
template<class T>
struct get_hash<void, T>
{
typedef ::boost::hash<T> type;
};
struct empty{};
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_DETAIL_UTILITIES_HPP