boost/container/list.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2013. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
#ifndef BOOST_CONTAINER_LIST_HPP
#define BOOST_CONTAINER_LIST_HPP
#if defined(_MSC_VER)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/container_fwd.hpp>
#include <boost/container/detail/version_type.hpp>
#include <boost/container/detail/iterators.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/container/throw_exception.hpp>
#include <boost/move/utility.hpp>
#include <boost/move/iterator.hpp>
#include <boost/move/detail/move_helpers.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/container/detail/utilities.hpp>
#include <boost/container/detail/algorithms.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/intrusive/list.hpp>
#include <boost/assert.hpp>
#include <boost/container/detail/node_alloc_holder.hpp>
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
#else
//Preprocessor library to emulate perfect forwarding
#include <boost/container/detail/preprocessor.hpp>
#endif
#include <iterator>
#include <utility>
#include <memory>
#include <functional>
#include <algorithm>
namespace boost {
namespace container {
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
namespace container_detail {
template<class VoidPointer>
struct list_hook
{
typedef typename container_detail::bi::make_list_base_hook
<container_detail::bi::void_pointer<VoidPointer>, container_detail::bi::link_mode<container_detail::bi::normal_link> >::type type;
};
template <class T, class VoidPointer>
struct list_node
: public list_hook<VoidPointer>::type
{
private:
list_node();
public:
typedef T value_type;
typedef typename list_hook<VoidPointer>::type hook_type;
T m_data;
T &get_data()
{ return this->m_data; }
const T &get_data() const
{ return this->m_data; }
};
template<class Allocator>
struct intrusive_list_type
{
typedef boost::container::allocator_traits<Allocator> allocator_traits_type;
typedef typename allocator_traits_type::value_type value_type;
typedef typename boost::intrusive::pointer_traits
<typename allocator_traits_type::pointer>::template
rebind_pointer<void>::type
void_pointer;
typedef typename container_detail::list_node
<value_type, void_pointer> node_type;
typedef typename container_detail::bi::make_list
< node_type
, container_detail::bi::base_hook<typename list_hook<void_pointer>::type>
, container_detail::bi::constant_time_size<true>
, container_detail::bi::size_type
<typename allocator_traits_type::size_type>
>::type container_type;
typedef container_type type ;
};
} //namespace container_detail {
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
//! A list is a doubly linked list. That is, it is a Sequence that supports both
//! forward and backward traversal, and (amortized) constant time insertion and
//! removal of elements at the beginning or the end, or in the middle. Lists have
//! the important property that insertion and splicing do not invalidate iterators
//! to list elements, and that even removal invalidates only the iterators that point
//! to the elements that are removed. The ordering of iterators may be changed
//! (that is, list<T>::iterator might have a different predecessor or successor
//! after a list operation than it did before), but the iterators themselves will
//! not be invalidated or made to point to different elements unless that invalidation
//! or mutation is explicit.
//!
//! \tparam T The type of object that is stored in the list
//! \tparam Allocator The allocator used for all internal memory management
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class Allocator = std::allocator<T> >
#else
template <class T, class Allocator>
#endif
class list
: protected container_detail::node_alloc_holder
<Allocator, typename container_detail::intrusive_list_type<Allocator>::type>
{
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
typedef typename
container_detail::intrusive_list_type<Allocator>::type Icont;
typedef container_detail::node_alloc_holder<Allocator, Icont> AllocHolder;
typedef typename AllocHolder::NodePtr NodePtr;
typedef typename AllocHolder::NodeAlloc NodeAlloc;
typedef typename AllocHolder::ValAlloc ValAlloc;
typedef typename AllocHolder::Node Node;
typedef container_detail::allocator_destroyer<NodeAlloc> Destroyer;
typedef typename AllocHolder::allocator_v1 allocator_v1;
typedef typename AllocHolder::allocator_v2 allocator_v2;
typedef typename AllocHolder::alloc_version alloc_version;
typedef boost::container::allocator_traits<Allocator> allocator_traits_type;
class equal_to_value
{
typedef typename AllocHolder::value_type value_type;
const value_type &t_;
public:
equal_to_value(const value_type &t)
: t_(t)
{}
bool operator()(const value_type &t)const
{ return t_ == t; }
};
template<class Pred>
struct ValueCompareToNodeCompare
: Pred
{
ValueCompareToNodeCompare(Pred pred)
: Pred(pred)
{}
bool operator()(const Node &a, const Node &b) const
{ return static_cast<const Pred&>(*this)(a.m_data, b.m_data); }
bool operator()(const Node &a) const
{ return static_cast<const Pred&>(*this)(a.m_data); }
};
BOOST_COPYABLE_AND_MOVABLE(list)
typedef container_detail::iterator<typename Icont::iterator, false> iterator_impl;
typedef container_detail::iterator<typename Icont::iterator, true> const_iterator_impl;
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
public:
//////////////////////////////////////////////
//
// types
//
//////////////////////////////////////////////
typedef T value_type;
typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer const_pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::reference reference;
typedef typename ::boost::container::allocator_traits<Allocator>::const_reference const_reference;
typedef typename ::boost::container::allocator_traits<Allocator>::size_type size_type;
typedef typename ::boost::container::allocator_traits<Allocator>::difference_type difference_type;
typedef Allocator allocator_type;
typedef BOOST_CONTAINER_IMPDEF(NodeAlloc) stored_allocator_type;
typedef BOOST_CONTAINER_IMPDEF(iterator_impl) iterator;
typedef BOOST_CONTAINER_IMPDEF(const_iterator_impl) const_iterator;
typedef BOOST_CONTAINER_IMPDEF(std::reverse_iterator<iterator>) reverse_iterator;
typedef BOOST_CONTAINER_IMPDEF(std::reverse_iterator<const_iterator>) const_reverse_iterator;
//////////////////////////////////////////////
//
// construct/copy/destroy
//
//////////////////////////////////////////////
//! <b>Effects</b>: Default constructs a list.
//!
//! <b>Throws</b>: If allocator_type's default constructor throws.
//!
//! <b>Complexity</b>: Constant.
list()
: AllocHolder()
{}
//! <b>Effects</b>: Constructs a list taking the allocator as parameter.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
explicit list(const allocator_type &a) BOOST_CONTAINER_NOEXCEPT
: AllocHolder(a)
{}
//! <b>Effects</b>: Constructs a list that will use a copy of allocator a
//! and inserts n copies of value.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's default or copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
explicit list(size_type n)
: AllocHolder(Allocator())
{ this->resize(n); }
//! <b>Effects</b>: Constructs a list that will use a copy of allocator a
//! and inserts n copies of value.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's default or copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
list(size_type n, const T& value, const Allocator& a = Allocator())
: AllocHolder(a)
{ this->insert(this->cbegin(), n, value); }
//! <b>Effects</b>: Copy constructs a list.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Throws</b>: If allocator_type's default constructor throws.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
list(const list& x)
: AllocHolder(x)
{ this->insert(this->cbegin(), x.begin(), x.end()); }
//! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
list(BOOST_RV_REF(list) x)
: AllocHolder(boost::move(static_cast<AllocHolder&>(x)))
{}
//! <b>Effects</b>: Copy constructs a list using the specified allocator.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Throws</b>: If allocator_type's default constructor or copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
list(const list& x, const allocator_type &a)
: AllocHolder(a)
{ this->insert(this->cbegin(), x.begin(), x.end()); }
//! <b>Effects</b>: Move constructor sing the specified allocator.
//! Moves mx's resources to *this.
//!
//! <b>Throws</b>: If allocation or value_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant if a == x.get_allocator(), linear otherwise.
list(BOOST_RV_REF(list) x, const allocator_type &a)
: AllocHolder(a)
{
if(this->node_alloc() == x.node_alloc()){
this->icont().swap(x.icont());
}
else{
this->insert(this->cbegin(), x.begin(), x.end());
}
}
//! <b>Effects</b>: Constructs a list that will use a copy of allocator a
//! and inserts a copy of the range [first, last) in the list.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's constructor taking a dereferenced InIt throws.
//!
//! <b>Complexity</b>: Linear to the range [first, last).
template <class InpIt>
list(InpIt first, InpIt last, const Allocator &a = Allocator())
: AllocHolder(a)
{ this->insert(this->cbegin(), first, last); }
//! <b>Effects</b>: Destroys the list. All stored values are destroyed
//! and used memory is deallocated.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements.
~list() BOOST_CONTAINER_NOEXCEPT
{} //AllocHolder clears the list
//! <b>Effects</b>: Makes *this contain the same elements as x.
//!
//! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
//! of each of x's elements.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the number of elements in x.
list& operator=(BOOST_COPY_ASSIGN_REF(list) x)
{
if (&x != this){
NodeAlloc &this_alloc = this->node_alloc();
const NodeAlloc &x_alloc = x.node_alloc();
container_detail::bool_<allocator_traits_type::
propagate_on_container_copy_assignment::value> flag;
if(flag && this_alloc != x_alloc){
this->clear();
}
this->AllocHolder::copy_assign_alloc(x);
this->assign(x.begin(), x.end());
}
return *this;
}
//! <b>Effects</b>: Move assignment. All x's values are transferred to *this.
//!
//! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
//! before the function.
//!
//! <b>Throws</b>: If allocator_traits_type::propagate_on_container_move_assignment
//! is false and (allocation throws or value_type's move constructor throws)
//!
//! <b>Complexity</b>: Constant if allocator_traits_type::
//! propagate_on_container_move_assignment is true or
//! this->get>allocator() == x.get_allocator(). Linear otherwise.
list& operator=(BOOST_RV_REF(list) x)
BOOST_CONTAINER_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_move_assignment::value)
{
BOOST_ASSERT(this != &x);
NodeAlloc &this_alloc = this->node_alloc();
NodeAlloc &x_alloc = x.node_alloc();
const bool propagate_alloc = allocator_traits_type::
propagate_on_container_move_assignment::value;
const bool allocators_equal = this_alloc == x_alloc; (void)allocators_equal;
//Resources can be transferred if both allocators are
//going to be equal after this function (either propagated or already equal)
if(propagate_alloc || allocators_equal){
//Destroy
this->clear();
//Move allocator if needed
this->AllocHolder::move_assign_alloc(x);
//Obtain resources
this->icont() = boost::move(x.icont());
}
//Else do a one by one move
else{
this->assign( boost::make_move_iterator(x.begin())
, boost::make_move_iterator(x.end()));
}
return *this;
}
//! <b>Effects</b>: Assigns the n copies of val to *this.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
void assign(size_type n, const T& val)
{
typedef constant_iterator<value_type, difference_type> cvalue_iterator;
return this->assign(cvalue_iterator(val, n), cvalue_iterator());
}
//! <b>Effects</b>: Assigns the the range [first, last) to *this.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's constructor from dereferencing InpIt throws.
//!
//! <b>Complexity</b>: Linear to n.
template <class InpIt>
void assign(InpIt first, InpIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< !container_detail::is_convertible<InpIt, size_type>::value
>::type * = 0
#endif
)
{
iterator first1 = this->begin();
const iterator last1 = this->end();
for ( ; first1 != last1 && first != last; ++first1, ++first)
*first1 = *first;
if (first == last)
this->erase(first1, last1);
else{
this->insert(last1, first, last);
}
}
//! <b>Effects</b>: Returns a copy of the internal allocator.
//!
//! <b>Throws</b>: If allocator's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return allocator_type(this->node_alloc()); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT
{ return this->node_alloc(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return this->node_alloc(); }
//////////////////////////////////////////////
//
// iterators
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns an iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin() BOOST_CONTAINER_NOEXCEPT
{ return iterator(this->icont().begin()); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const BOOST_CONTAINER_NOEXCEPT
{ return this->cbegin(); }
//! <b>Effects</b>: Returns an iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end() BOOST_CONTAINER_NOEXCEPT
{ return iterator(this->icont().end()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const BOOST_CONTAINER_NOEXCEPT
{ return this->cend(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT
{ return reverse_iterator(end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT
{ return this->crbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT
{ return reverse_iterator(begin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT
{ return this->crend(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT
{ return const_iterator(this->non_const_icont().begin()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const BOOST_CONTAINER_NOEXCEPT
{ return const_iterator(this->non_const_icont().end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT
{ return const_reverse_iterator(this->cend()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT
{ return const_reverse_iterator(this->cbegin()); }
//////////////////////////////////////////////
//
// capacity
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns true if the list contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const BOOST_CONTAINER_NOEXCEPT
{ return !this->size(); }
//! <b>Effects</b>: Returns the number of the elements contained in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const BOOST_CONTAINER_NOEXCEPT
{ return this->icont().size(); }
//! <b>Effects</b>: Returns the largest possible size of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const BOOST_CONTAINER_NOEXCEPT
{ return AllocHolder::max_size(); }
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are value initialized.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size)
{
if(!priv_try_shrink(new_size)){
typedef value_init_construct_iterator<value_type, difference_type> value_init_iterator;
this->insert(this->cend(), value_init_iterator(new_size - this->size()), value_init_iterator());
}
}
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are copy constructed from x.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size, const T& x)
{
if(!priv_try_shrink(new_size)){
this->insert(this->cend(), new_size - this->size(), x);
}
}
//////////////////////////////////////////////
//
// element access
//
//////////////////////////////////////////////
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the first element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference front() BOOST_CONTAINER_NOEXCEPT
{ return *this->begin(); }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the first element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference front() const BOOST_CONTAINER_NOEXCEPT
{ return *this->begin(); }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the first element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference back() BOOST_CONTAINER_NOEXCEPT
{ return *(--this->end()); }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the first element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference back() const BOOST_CONTAINER_NOEXCEPT
{ return *(--this->end()); }
//////////////////////////////////////////////
//
// modifiers
//
//////////////////////////////////////////////
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the end of the list.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's in-place constructor throws.
//!
//! <b>Complexity</b>: Constant
template <class... Args>
void emplace_back(Args&&... args)
{ this->emplace(this->cend(), boost::forward<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the beginning of the list.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's in-place constructor throws.
//!
//! <b>Complexity</b>: Constant
template <class... Args>
void emplace_front(Args&&... args)
{ this->emplace(this->cbegin(), boost::forward<Args>(args)...); }
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... before p.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's in-place constructor throws.
//!
//! <b>Complexity</b>: Constant
template <class... Args>
iterator emplace(const_iterator p, Args&&... args)
{
NodePtr pnode(AllocHolder::create_node(boost::forward<Args>(args)...));
return iterator(this->icont().insert(p.get(), *pnode));
}
#else //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#define BOOST_PP_LOCAL_MACRO(n) \
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
void emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
this->emplace(this->cend() \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
void emplace_front(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
this->emplace(this->cbegin() \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)); \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace(const_iterator p \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
NodePtr pnode (AllocHolder::create_node \
(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _))); \
return iterator(this->icont().insert(p.get(), *pnode)); \
} \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts a copy of x at the beginning of the list.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_front(const T &x);
//! <b>Effects</b>: Constructs a new element in the beginning of the list
//! and moves the resources of mx to this new element.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_front(T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH(push_front, T, void, priv_push_front)
#endif
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts a copy of x at the end of the list.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(const T &x);
//! <b>Effects</b>: Constructs a new element in the end of the list
//! and moves the resources of mx to this new element.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back)
#endif
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of x before position.
//!
//! <b>Returns</b>: an iterator to the inserted element.
//!
//! <b>Throws</b>: If memory allocation throws or x's copy constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
iterator insert(const_iterator position, const T &x);
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a new element before position with mx's resources.
//!
//! <b>Returns</b>: an iterator to the inserted element.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Amortized constant time.
iterator insert(const_iterator position, T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator, const_iterator)
#endif
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts n copies of x before p.
//!
//! <b>Returns</b>: an iterator to the first inserted element or p if n is 0.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
iterator insert(const_iterator p, size_type n, const T& x)
{
typedef constant_iterator<value_type, difference_type> cvalue_iterator;
return this->insert(p, cvalue_iterator(x, n), cvalue_iterator());
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of the [first, last) range before p.
//!
//! <b>Returns</b>: an iterator to the first inserted element or p if first == last.
//!
//! <b>Throws</b>: If memory allocation throws, T's constructor from a
//! dereferenced InpIt throws.
//!
//! <b>Complexity</b>: Linear to std::distance [first, last).
template <class InpIt>
iterator insert(const_iterator p, InpIt first, InpIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< !container_detail::is_convertible<InpIt, size_type>::value
&& (container_detail::is_input_iterator<InpIt>::value
|| container_detail::is_same<alloc_version, allocator_v1>::value
)
>::type * = 0
#endif
)
{
const typename Icont::iterator ipos(p.get());
iterator ret_it(ipos);
if(first != last){
ret_it = iterator(this->icont().insert(ipos, *this->create_node_from_it(first)));
++first;
}
for (; first != last; ++first){
this->icont().insert(ipos, *this->create_node_from_it(first));
}
return ret_it;
}
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template <class FwdIt>
iterator insert(const_iterator p, FwdIt first, FwdIt last
, typename container_detail::enable_if_c
< !container_detail::is_convertible<FwdIt, size_type>::value
&& !(container_detail::is_input_iterator<FwdIt>::value
|| container_detail::is_same<alloc_version, allocator_v1>::value
)
>::type * = 0
)
{
//Optimized allocation and construction
insertion_functor func(this->icont(), p.get());
iterator before_p(p.get());
--before_p;
this->allocate_many_and_construct(first, std::distance(first, last), func);
return ++before_p;
}
#endif
//! <b>Effects</b>: Removes the first element from the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Amortized constant time.
void pop_front() BOOST_CONTAINER_NOEXCEPT
{ this->erase(this->cbegin()); }
//! <b>Effects</b>: Removes the last element from the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Amortized constant time.
void pop_back() BOOST_CONTAINER_NOEXCEPT
{ const_iterator tmp = this->cend(); this->erase(--tmp); }
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Erases the element at p p.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Amortized constant time.
iterator erase(const_iterator p) BOOST_CONTAINER_NOEXCEPT
{ return iterator(this->icont().erase_and_dispose(p.get(), Destroyer(this->node_alloc()))); }
//! <b>Requires</b>: first and last must be valid iterator to elements in *this.
//!
//! <b>Effects</b>: Erases the elements pointed by [first, last).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the distance between first and last.
iterator erase(const_iterator first, const_iterator last) BOOST_CONTAINER_NOEXCEPT
{ return iterator(AllocHolder::erase_range(first.get(), last.get(), alloc_version())); }
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(list& x)
{ AllocHolder::swap(x); }
//! <b>Effects</b>: Erases all the elements of the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements in the list.
void clear() BOOST_CONTAINER_NOEXCEPT
{ AllocHolder::clear(alloc_version()); }
//////////////////////////////////////////////
//
// slist operations
//
//////////////////////////////////////////////
//! <b>Requires</b>: p must point to an element contained
//! by the list. x != *this. this' allocator and x's allocator shall compare equal
//!
//! <b>Effects</b>: Transfers all the elements of list x to this list, before the
//! the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of
//! this list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator p, list& x) BOOST_CONTAINER_NOEXCEPT
{
BOOST_ASSERT(this != &x);
BOOST_ASSERT(this->node_alloc() == x.node_alloc());
this->icont().splice(p.get(), x.icont());
}
//! <b>Requires</b>: p must point to an element contained
//! by the list. x != *this. this' allocator and x's allocator shall compare equal
//!
//! <b>Effects</b>: Transfers all the elements of list x to this list, before the
//! the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of
//! this list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator p, BOOST_RV_REF(list) x) BOOST_CONTAINER_NOEXCEPT
{ this->splice(p, static_cast<list&>(x)); }
//! <b>Requires</b>: p must point to an element contained
//! by this list. i must point to an element contained in list x.
//! this' allocator and x's allocator shall compare equal
//!
//! <b>Effects</b>: Transfers the value pointed by i, from list x to this list,
//! before the the element pointed by p. No destructors or copy constructors are called.
//! If p == i or p == ++i, this function is a null operation.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator p, list &x, const_iterator i) BOOST_CONTAINER_NOEXCEPT
{
//BOOST_ASSERT(this != &x);
BOOST_ASSERT(this->node_alloc() == x.node_alloc());
this->icont().splice(p.get(), x.icont(), i.get());
}
//! <b>Requires</b>: p must point to an element contained
//! by this list. i must point to an element contained in list x.
//! this' allocator and x's allocator shall compare equal.
//!
//! <b>Effects</b>: Transfers the value pointed by i, from list x to this list,
//! before the the element pointed by p. No destructors or copy constructors are called.
//! If p == i or p == ++i, this function is a null operation.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator p, BOOST_RV_REF(list) x, const_iterator i) BOOST_CONTAINER_NOEXCEPT
{ this->splice(p, static_cast<list&>(x), i); }
//! <b>Requires</b>: p must point to an element contained
//! by this list. first and last must point to elements contained in list x.
//! this' allocator and x's allocator shall compare equal
//!
//! <b>Effects</b>: Transfers the range pointed by first and last from list x to this list,
//! before the the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Linear to the number of elements transferred.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator p, list &x, const_iterator first, const_iterator last) BOOST_CONTAINER_NOEXCEPT
{
BOOST_ASSERT(this->node_alloc() == x.node_alloc());
this->icont().splice(p.get(), x.icont(), first.get(), last.get());
}
//! <b>Requires</b>: p must point to an element contained
//! by this list. first and last must point to elements contained in list x.
//! this' allocator and x's allocator shall compare equal.
//!
//! <b>Effects</b>: Transfers the range pointed by first and last from list x to this list,
//! before the the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Linear to the number of elements transferred.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
void splice(const_iterator p, BOOST_RV_REF(list) x, const_iterator first, const_iterator last) BOOST_CONTAINER_NOEXCEPT
{ this->splice(p, static_cast<list&>(x), first, last); }
//! <b>Requires</b>: p must point to an element contained
//! by this list. first and last must point to elements contained in list x.
//! n == std::distance(first, last). this' allocator and x's allocator shall compare equal
//!
//! <b>Effects</b>: Transfers the range pointed by first and last from list x to this list,
//! before the the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
//!
//! <b>Note</b>: Non-standard extension
void splice(const_iterator p, list &x, const_iterator first, const_iterator last, size_type n) BOOST_CONTAINER_NOEXCEPT
{
BOOST_ASSERT(this->node_alloc() == x.node_alloc());
this->icont().splice(p.get(), x.icont(), first.get(), last.get(), n);
}
//! <b>Requires</b>: p must point to an element contained
//! by this list. first and last must point to elements contained in list x.
//! n == std::distance(first, last). this' allocator and x's allocator shall compare equal
//!
//! <b>Effects</b>: Transfers the range pointed by first and last from list x to this list,
//! before the the element pointed by p. No destructors or copy constructors are called.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Iterators of values obtained from list x now point to elements of this
//! list. Iterators of this list and all the references are not invalidated.
//!
//! <b>Note</b>: Non-standard extension
void splice(const_iterator p, BOOST_RV_REF(list) x, const_iterator first, const_iterator last, size_type n) BOOST_CONTAINER_NOEXCEPT
{ this->splice(p, static_cast<list&>(x), first, last, n); }
//! <b>Effects</b>: Removes all the elements that compare equal to value.
//!
//! <b>Throws</b>: If comparison throws.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() comparisons for equality.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
void remove(const T& value)
{ this->remove_if(equal_to_value(value)); }
//! <b>Effects</b>: Removes all the elements for which a specified
//! predicate is satisfied.
//!
//! <b>Throws</b>: If pred throws.
//!
//! <b>Complexity</b>: Linear time. It performs exactly size() calls to the predicate.
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template <class Pred>
void remove_if(Pred pred)
{
typedef ValueCompareToNodeCompare<Pred> Predicate;
this->icont().remove_and_dispose_if(Predicate(pred), Destroyer(this->node_alloc()));
}
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that are equal from the list.
//!
//! <b>Throws</b>: If comparison throws.
//!
//! <b>Complexity</b>: Linear time (size()-1 comparisons equality comparisons).
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
void unique()
{ this->unique(value_equal()); }
//! <b>Effects</b>: Removes adjacent duplicate elements or adjacent
//! elements that satisfy some binary predicate from the list.
//!
//! <b>Throws</b>: If pred throws.
//!
//! <b>Complexity</b>: Linear time (size()-1 comparisons calls to pred()).
//!
//! <b>Note</b>: The relative order of elements that are not removed is unchanged,
//! and iterators to elements that are not removed remain valid.
template <class BinaryPredicate>
void unique(BinaryPredicate binary_pred)
{
typedef ValueCompareToNodeCompare<BinaryPredicate> Predicate;
this->icont().unique_and_dispose(Predicate(binary_pred), Destroyer(this->node_alloc()));
}
//! <b>Requires</b>: The lists x and *this must be distinct.
//!
//! <b>Effects</b>: This function removes all of x's elements and inserts them
//! in order into *this according to std::less<value_type>. The merge is stable;
//! that is, if an element from *this is equivalent to one from x, then the element
//! from *this will precede the one from x.
//!
//! <b>Throws</b>: If comparison throws.
//!
//! <b>Complexity</b>: This function is linear time: it performs at most
//! size() + x.size() - 1 comparisons.
void merge(list &x)
{ this->merge(x, value_less()); }
//! <b>Requires</b>: The lists x and *this must be distinct.
//!
//! <b>Effects</b>: This function removes all of x's elements and inserts them
//! in order into *this according to std::less<value_type>. The merge is stable;
//! that is, if an element from *this is equivalent to one from x, then the element
//! from *this will precede the one from x.
//!
//! <b>Throws</b>: If comparison throws.
//!
//! <b>Complexity</b>: This function is linear time: it performs at most
//! size() + x.size() - 1 comparisons.
void merge(BOOST_RV_REF(list) x)
{ this->merge(static_cast<list&>(x)); }
//! <b>Requires</b>: p must be a comparison function that induces a strict weak
//! ordering and both *this and x must be sorted according to that ordering
//! The lists x and *this must be distinct.
//!
//! <b>Effects</b>: This function removes all of x's elements and inserts them
//! in order into *this. The merge is stable; that is, if an element from *this is
//! equivalent to one from x, then the element from *this will precede the one from x.
//!
//! <b>Throws</b>: If comp throws.
//!
//! <b>Complexity</b>: This function is linear time: it performs at most
//! size() + x.size() - 1 comparisons.
//!
//! <b>Note</b>: Iterators and references to *this are not invalidated.
template <class StrictWeakOrdering>
void merge(list &x, const StrictWeakOrdering &comp)
{
BOOST_ASSERT(this->node_alloc() == x.node_alloc());
this->icont().merge(x.icont(),
ValueCompareToNodeCompare<StrictWeakOrdering>(comp));
}
//! <b>Requires</b>: p must be a comparison function that induces a strict weak
//! ordering and both *this and x must be sorted according to that ordering
//! The lists x and *this must be distinct.
//!
//! <b>Effects</b>: This function removes all of x's elements and inserts them
//! in order into *this. The merge is stable; that is, if an element from *this is
//! equivalent to one from x, then the element from *this will precede the one from x.
//!
//! <b>Throws</b>: If comp throws.
//!
//! <b>Complexity</b>: This function is linear time: it performs at most
//! size() + x.size() - 1 comparisons.
//!
//! <b>Note</b>: Iterators and references to *this are not invalidated.
template <class StrictWeakOrdering>
void merge(BOOST_RV_REF(list) x, StrictWeakOrdering comp)
{ this->merge(static_cast<list&>(x), comp); }
//! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>.
//! The sort is stable, that is, the relative order of equivalent elements is preserved.
//!
//! <b>Throws</b>: If comparison throws.
//!
//! <b>Notes</b>: Iterators and references are not invalidated.
//!
//! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
//! is the list's size.
void sort()
{ this->sort(value_less()); }
//! <b>Effects</b>: This function sorts the list *this according to std::less<value_type>.
//! The sort is stable, that is, the relative order of equivalent elements is preserved.
//!
//! <b>Throws</b>: If comp throws.
//!
//! <b>Notes</b>: Iterators and references are not invalidated.
//!
//! <b>Complexity</b>: The number of comparisons is approximately N log N, where N
//! is the list's size.
template <class StrictWeakOrdering>
void sort(StrictWeakOrdering comp)
{
// nothing if the list has length 0 or 1.
if (this->size() < 2)
return;
this->icont().sort(ValueCompareToNodeCompare<StrictWeakOrdering>(comp));
}
//! <b>Effects</b>: Reverses the order of elements in the list.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: This function is linear time.
//!
//! <b>Note</b>: Iterators and references are not invalidated
void reverse() BOOST_CONTAINER_NOEXCEPT
{ this->icont().reverse(); }
//! <b>Effects</b>: Returns true if x and y are equal
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator==(const list& x, const list& y)
{
if(x.size() != y.size()){
return false;
}
typedef typename list::const_iterator const_iterator;
const_iterator end1 = x.end();
const_iterator i1 = x.begin();
const_iterator i2 = y.begin();
while (i1 != end1 && *i1 == *i2) {
++i1;
++i2;
}
return i1 == end1;
}
//! <b>Effects</b>: Returns true if x and y are unequal
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator!=(const list& x, const list& y)
{ return !(x == y); }
//! <b>Effects</b>: Returns true if x is less than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator<(const list& x, const list& y)
{ return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); }
//! <b>Effects</b>: Returns true if x is greater than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator>(const list& x, const list& y)
{ return y < x; }
//! <b>Effects</b>: Returns true if x is equal or less than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator<=(const list& x, const list& y)
{ return !(y < x); }
//! <b>Effects</b>: Returns true if x is equal or greater than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator>=(const list& x, const list& y)
{ return !(x < y); }
//! <b>Effects</b>: x.swap(y)
//!
//! <b>Complexity</b>: Constant.
friend void swap(list& x, list& y)
{ x.swap(y); }
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
private:
bool priv_try_shrink(size_type new_size)
{
const size_type len = this->size();
if(len > new_size){
const const_iterator iend = this->cend();
size_type to_erase = len - new_size;
const_iterator ifirst;
if(to_erase < len/2u){
ifirst = iend;
while(to_erase--){
--ifirst;
}
}
else{
ifirst = this->cbegin();
size_type to_skip = len - to_erase;
while(to_skip--){
++ifirst;
}
}
this->erase(ifirst, iend);
return true;
}
else{
return false;
}
}
iterator priv_insert(const_iterator p, const T &x)
{
NodePtr tmp = AllocHolder::create_node(x);
return iterator(this->icont().insert(p.get(), *tmp));
}
iterator priv_insert(const_iterator p, BOOST_RV_REF(T) x)
{
NodePtr tmp = AllocHolder::create_node(boost::move(x));
return iterator(this->icont().insert(p.get(), *tmp));
}
void priv_push_back (const T &x)
{ this->insert(this->cend(), x); }
void priv_push_back (BOOST_RV_REF(T) x)
{ this->insert(this->cend(), boost::move(x)); }
void priv_push_front (const T &x)
{ this->insert(this->cbegin(), x); }
void priv_push_front (BOOST_RV_REF(T) x)
{ this->insert(this->cbegin(), boost::move(x)); }
class insertion_functor;
friend class insertion_functor;
class insertion_functor
{
Icont &icont_;
typedef typename Icont::const_iterator iconst_iterator;
const iconst_iterator pos_;
public:
insertion_functor(Icont &icont, typename Icont::const_iterator pos)
: icont_(icont), pos_(pos)
{}
void operator()(Node &n)
{
this->icont_.insert(pos_, n);
}
};
//Functors for member algorithm defaults
struct value_less
{
bool operator()(const value_type &a, const value_type &b) const
{ return a < b; }
};
struct value_equal
{
bool operator()(const value_type &a, const value_type &b) const
{ return a == b; }
};
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
};
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
} //namespace container {
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class Allocator>
struct has_trivial_destructor_after_move<boost::container::list<T, Allocator> >
: public ::boost::has_trivial_destructor_after_move<Allocator>
{};
namespace container {
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
}}
#include <boost/container/detail/config_end.hpp>
#endif // BOOST_CONTAINER_LIST_HPP