boost/accumulators/numeric/functional.hpp
///////////////////////////////////////////////////////////////////////////////
/// \file functional.hpp
///
// Copyright 2005 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_NUMERIC_FUNCTIONAL_HPP_EAN_08_12_2005
#define BOOST_NUMERIC_FUNCTIONAL_HPP_EAN_08_12_2005
#include <limits>
#include <functional>
#include <boost/static_assert.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/and.hpp>
#include <boost/type_traits/remove_const.hpp>
#include <boost/type_traits/add_reference.hpp>
#include <boost/type_traits/is_empty.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/typeof/typeof.hpp>
#include <boost/accumulators/accumulators_fwd.hpp>
#include <boost/accumulators/numeric/functional_fwd.hpp>
#include <boost/accumulators/numeric/detail/function1.hpp>
#include <boost/accumulators/numeric/detail/function2.hpp>
#include <boost/accumulators/numeric/detail/pod_singleton.hpp>
#ifdef BOOST_NUMERIC_FUNCTIONAL_STD_VECTOR_SUPPORT
# include <boost/accumulators/numeric/functional/vector.hpp>
#endif
#ifdef BOOST_NUMERIC_FUNCTIONAL_STD_VALARRAY_SUPPORT
# include <boost/accumulators/numeric/functional/valarray.hpp>
#endif
#ifdef BOOST_NUMERIC_FUNCTIONAL_STD_COMPLEX_SUPPORT
# include <boost/accumulators/numeric/functional/complex.hpp>
#endif
/// INTERNAL ONLY
///
#define BOOST_NUMERIC_FUNCTIONAL_HPP_INCLUDED
#ifdef BOOST_NUMERIC_FUNCTIONAL_DOXYGEN_INVOKED
// Hack to make Doxygen show the inheritance relationships
/// INTERNAL ONLY
///
namespace std
{
/// INTERNAL ONLY
///
template<class Arg, class Ret> struct unary_function {};
/// INTERNAL ONLY
///
template<class Left, class Right, class Ret> struct binary_function {};
}
#endif
namespace boost { namespace numeric
{
namespace functional
{
/// INTERNAL ONLY
///
template<typename A0, typename A1>
struct are_integral
: mpl::and_<is_integral<A0>, is_integral<A1> >
{};
template<typename Left, typename Right>
struct left_ref
{
typedef Left &type;
};
namespace detail
{
template<typename T>
T &lvalue_of();
}
}
// TODO: handle complex weight, valarray, MTL vectors
/// INTERNAL ONLY
///
#define BOOST_NUMERIC_FUNCTIONAL_DEFINE_UNARY_OP(Name, Op) \
namespace functional \
{ \
template<typename Arg> \
struct result_of_ ## Name \
{ \
BOOST_TYPEOF_NESTED_TYPEDEF_TPL( \
nested \
, Op boost::numeric::functional::detail::lvalue_of<Arg>() \
) \
typedef typename nested::type type; \
}; \
template<typename Arg, typename EnableIf> \
struct Name ## _base \
: std::unary_function< \
typename remove_const<Arg>::type \
, typename result_of_ ## Name<Arg>::type \
> \
{ \
typename result_of_ ## Name<Arg>::type operator ()(Arg &arg) const \
{ \
return Op arg; \
} \
}; \
template<typename Arg, typename ArgTag> \
struct Name \
: Name ## _base<Arg, void> \
{}; \
} \
namespace op \
{ \
struct Name \
: boost::detail::function1<functional::Name<_, functional::tag<_> > > \
{}; \
} \
namespace \
{ \
op::Name const &Name = boost::detail::pod_singleton<op::Name>::instance; \
} \
/**/
/// INTERNAL ONLY
///
#define BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(Name, Op, RetType) \
namespace functional \
{ \
template<typename Left, typename Right, typename EnableIf> \
struct result_of_ ## Name \
{ \
RetType(Left, Op, Right) \
}; \
template<typename Left, typename Right, typename EnableIf> \
struct Name ## _base \
: std::binary_function< \
typename remove_const<Left>::type \
, typename remove_const<Right>::type \
, typename result_of_ ## Name<Left, Right>::type \
> \
{ \
typename result_of_ ## Name<Left, Right>::type \
operator ()(Left &left, Right &right) const \
{ \
return left Op right; \
} \
}; \
template<typename Left, typename Right, typename LeftTag, typename RightTag> \
struct Name \
: Name ## _base<Left, Right, void> \
{}; \
} \
namespace op \
{ \
struct Name \
: boost::detail::function2< \
functional::Name<_1, _2, functional::tag<_1>, functional::tag<_2> > \
> \
{}; \
} \
namespace \
{ \
op::Name const &Name = boost::detail::pod_singleton<op::Name>::instance; \
} \
BOOST_ACCUMULATORS_IGNORE_GLOBAL(Name) \
/**/
/// INTERNAL ONLY
///
#define BOOST_NUMERIC_FUNCTIONAL_DEDUCED(Left, Op, Right) \
BOOST_TYPEOF_NESTED_TYPEDEF_TPL( \
nested \
, boost::numeric::functional::detail::lvalue_of<Left>() Op \
boost::numeric::functional::detail::lvalue_of<Right>() \
) \
typedef typename nested::type type; \
/**/
/// INTERNAL ONLY
///
#define BOOST_NUMERIC_FUNCTIONAL_LEFT(Left, Op, Right) \
typedef Left &type; \
/**/
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(plus, +, BOOST_NUMERIC_FUNCTIONAL_DEDUCED)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(minus, -, BOOST_NUMERIC_FUNCTIONAL_DEDUCED)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(multiplies, *, BOOST_NUMERIC_FUNCTIONAL_DEDUCED)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(divides, /, BOOST_NUMERIC_FUNCTIONAL_DEDUCED)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(modulus, %, BOOST_NUMERIC_FUNCTIONAL_DEDUCED)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(greater, >, BOOST_NUMERIC_FUNCTIONAL_DEDUCED)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(greater_equal, >=, BOOST_NUMERIC_FUNCTIONAL_DEDUCED)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(less, <, BOOST_NUMERIC_FUNCTIONAL_DEDUCED)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(less_equal, <=, BOOST_NUMERIC_FUNCTIONAL_DEDUCED)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(equal_to, ==, BOOST_NUMERIC_FUNCTIONAL_DEDUCED)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(not_equal_to, !=, BOOST_NUMERIC_FUNCTIONAL_DEDUCED)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(assign, =, BOOST_NUMERIC_FUNCTIONAL_LEFT)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(plus_assign, +=, BOOST_NUMERIC_FUNCTIONAL_LEFT)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(minus_assign, -=, BOOST_NUMERIC_FUNCTIONAL_LEFT)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(multiplies_assign, *=, BOOST_NUMERIC_FUNCTIONAL_LEFT)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(divides_assign, /=, BOOST_NUMERIC_FUNCTIONAL_LEFT)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP(modulus_assign, %=, BOOST_NUMERIC_FUNCTIONAL_LEFT)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_UNARY_OP(unary_plus, +)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_UNARY_OP(unary_minus, -)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_UNARY_OP(complement, ~)
BOOST_NUMERIC_FUNCTIONAL_DEFINE_UNARY_OP(logical_not, !)
#undef BOOST_NUMERIC_FUNCTIONAL_LEFT
#undef BOOST_NUMERIC_FUNCTIONAL_DEDUCED
#undef BOOST_NUMERIC_FUNCTIONAL_DEFINE_UNARY_OP
#undef BOOST_NUMERIC_FUNCTIONAL_DEFINE_BINARY_OP
namespace functional
{
template<typename Left, typename Right, typename EnableIf>
struct min_assign_base
: std::binary_function<Left, Right, void>
{
void operator ()(Left &left, Right &right) const
{
if(numeric::less(right, left))
{
left = right;
}
}
};
template<typename Left, typename Right, typename EnableIf>
struct max_assign_base
: std::binary_function<Left, Right, void>
{
void operator ()(Left &left, Right &right) const
{
if(numeric::greater(right, left))
{
left = right;
}
}
};
template<typename Left, typename Right, typename EnableIf>
struct fdiv_base
: functional::divides<Left, Right>
{};
// partial specialization that promotes the arguments to double for
// integral division.
template<typename Left, typename Right>
struct fdiv_base<Left, Right, typename enable_if<are_integral<Left, Right> >::type>
: functional::divides<double const, double const>
{};
template<typename To, typename From, typename EnableIf>
struct promote_base
: std::unary_function<From, To>
{
To operator ()(From &from) const
{
return from;
}
};
template<typename ToFrom>
struct promote_base<ToFrom, ToFrom, void>
: std::unary_function<ToFrom, ToFrom>
{
ToFrom &operator ()(ToFrom &tofrom)
{
return tofrom;
}
};
template<typename Arg, typename EnableIf>
struct as_min_base
: std::unary_function<Arg, typename remove_const<Arg>::type>
{
BOOST_STATIC_ASSERT(std::numeric_limits<typename remove_const<Arg>::type>::is_specialized);
typename remove_const<Arg>::type operator ()(Arg &) const
{
return (std::numeric_limits<typename remove_const<Arg>::type>::min)();
}
};
template<typename Arg>
struct as_min_base<Arg, typename enable_if<is_floating_point<Arg> >::type>
: std::unary_function<Arg, typename remove_const<Arg>::type>
{
BOOST_STATIC_ASSERT(std::numeric_limits<typename remove_const<Arg>::type>::is_specialized);
typename remove_const<Arg>::type operator ()(Arg &) const
{
return -(std::numeric_limits<typename remove_const<Arg>::type>::max)();
}
};
template<typename Arg, typename EnableIf>
struct as_max_base
: std::unary_function<Arg, typename remove_const<Arg>::type>
{
BOOST_STATIC_ASSERT(std::numeric_limits<typename remove_const<Arg>::type>::is_specialized);
typename remove_const<Arg>::type operator ()(Arg &) const
{
return (std::numeric_limits<typename remove_const<Arg>::type>::max)();
}
};
template<typename Arg, typename EnableIf>
struct as_zero_base
: std::unary_function<Arg, typename remove_const<Arg>::type>
{
typename remove_const<Arg>::type operator ()(Arg &) const
{
return numeric::zero<typename remove_const<Arg>::type>::value;
}
};
template<typename Arg, typename EnableIf>
struct as_one_base
: std::unary_function<Arg, typename remove_const<Arg>::type>
{
typename remove_const<Arg>::type operator ()(Arg &) const
{
return numeric::one<typename remove_const<Arg>::type>::value;
}
};
template<typename To, typename From, typename ToTag, typename FromTag>
struct promote
: promote_base<To, From, void>
{};
template<typename Left, typename Right, typename LeftTag, typename RightTag>
struct min_assign
: min_assign_base<Left, Right, void>
{};
template<typename Left, typename Right, typename LeftTag, typename RightTag>
struct max_assign
: max_assign_base<Left, Right, void>
{};
template<typename Left, typename Right, typename LeftTag, typename RightTag>
struct fdiv
: fdiv_base<Left, Right, void>
{};
/// INTERNAL ONLY
/// For back-compat only. Use fdiv.
template<typename Left, typename Right, typename LeftTag, typename RightTag>
struct average
: fdiv<Left, Right, LeftTag, RightTag>
{};
template<typename Arg, typename Tag>
struct as_min
: as_min_base<Arg, void>
{};
template<typename Arg, typename Tag>
struct as_max
: as_max_base<Arg, void>
{};
template<typename Arg, typename Tag>
struct as_zero
: as_zero_base<Arg, void>
{};
template<typename Arg, typename Tag>
struct as_one
: as_one_base<Arg, void>
{};
}
namespace op
{
template<typename To>
struct promote
: boost::detail::function1<functional::promote<To, _, typename functional::tag<To>::type, functional::tag<_> > >
{};
struct min_assign
: boost::detail::function2<functional::min_assign<_1, _2, functional::tag<_1>, functional::tag<_2> > >
{};
struct max_assign
: boost::detail::function2<functional::max_assign<_1, _2, functional::tag<_1>, functional::tag<_2> > >
{};
struct fdiv
: boost::detail::function2<functional::fdiv<_1, _2, functional::tag<_1>, functional::tag<_2> > >
{};
/// INTERNAL ONLY
struct average
: boost::detail::function2<functional::fdiv<_1, _2, functional::tag<_1>, functional::tag<_2> > >
{};
struct as_min
: boost::detail::function1<functional::as_min<_, functional::tag<_> > >
{};
struct as_max
: boost::detail::function1<functional::as_max<_, functional::tag<_> > >
{};
struct as_zero
: boost::detail::function1<functional::as_zero<_, functional::tag<_> > >
{};
struct as_one
: boost::detail::function1<functional::as_one<_, functional::tag<_> > >
{};
}
namespace
{
op::min_assign const &min_assign = boost::detail::pod_singleton<op::min_assign>::instance;
op::max_assign const &max_assign = boost::detail::pod_singleton<op::max_assign>::instance;
op::fdiv const &fdiv = boost::detail::pod_singleton<op::fdiv>::instance;
op::fdiv const &average = boost::detail::pod_singleton<op::fdiv>::instance; ///< INTERNAL ONLY
op::as_min const &as_min = boost::detail::pod_singleton<op::as_min>::instance;
op::as_max const &as_max = boost::detail::pod_singleton<op::as_max>::instance;
op::as_zero const &as_zero = boost::detail::pod_singleton<op::as_zero>::instance;
op::as_one const &as_one = boost::detail::pod_singleton<op::as_one>::instance;
BOOST_ACCUMULATORS_IGNORE_GLOBAL(min_assign)
BOOST_ACCUMULATORS_IGNORE_GLOBAL(max_assign)
BOOST_ACCUMULATORS_IGNORE_GLOBAL(fdiv)
BOOST_ACCUMULATORS_IGNORE_GLOBAL(average)
BOOST_ACCUMULATORS_IGNORE_GLOBAL(as_min)
BOOST_ACCUMULATORS_IGNORE_GLOBAL(as_max)
BOOST_ACCUMULATORS_IGNORE_GLOBAL(as_zero)
BOOST_ACCUMULATORS_IGNORE_GLOBAL(as_one)
}
///////////////////////////////////////////////////////////////////////////////
// promote
template<typename To, typename From>
typename lazy_disable_if<is_const<From>, mpl::if_<is_same<To, From>, To &, To> >::type
promote(From &from)
{
return functional::promote<To, From>()(from);
}
template<typename To, typename From>
typename mpl::if_<is_same<To const, From const>, To const &, To const>::type
promote(From const &from)
{
return functional::promote<To const, From const>()(from);
}
template<typename T>
struct default_
{
typedef default_ type;
typedef T value_type;
static T const value;
operator T const & () const
{
return default_::value;
}
};
template<typename T>
T const default_<T>::value = T();
template<typename T>
struct one
{
typedef one type;
typedef T value_type;
static T const value;
operator T const & () const
{
return one::value;
}
};
template<typename T>
T const one<T>::value = T(1);
template<typename T>
struct zero
{
typedef zero type;
typedef T value_type;
static T const value;
operator T const & () const
{
return zero::value;
}
};
template<typename T>
T const zero<T>::value = T();
template<typename T>
struct one_or_default
: mpl::if_<is_empty<T>, default_<T>, one<T> >::type
{};
template<typename T>
struct zero_or_default
: mpl::if_<is_empty<T>, default_<T>, zero<T> >::type
{};
}} // namespace boost::numeric
#endif