boost/lockfree/queue.hpp
// lock-free queue from
// Michael, M. M. and Scott, M. L.,
// "simple, fast and practical non-blocking and blocking concurrent queue algorithms"
//
// Copyright (C) 2008-2013 Tim Blechmann
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_LOCKFREE_FIFO_HPP_INCLUDED
#define BOOST_LOCKFREE_FIFO_HPP_INCLUDED
#include <boost/assert.hpp>
#ifdef BOOST_NO_CXX11_DELETED_FUNCTIONS
#include <boost/noncopyable.hpp>
#endif
#include <boost/static_assert.hpp>
#include <boost/type_traits/has_trivial_assign.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/lockfree/detail/atomic.hpp>
#include <boost/lockfree/detail/copy_payload.hpp>
#include <boost/lockfree/detail/freelist.hpp>
#include <boost/lockfree/detail/parameter.hpp>
#include <boost/lockfree/detail/tagged_ptr.hpp>
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable: 4324) // structure was padded due to __declspec(align())
#endif
namespace boost {
namespace lockfree {
namespace detail {
typedef parameter::parameters<boost::parameter::optional<tag::allocator>,
boost::parameter::optional<tag::capacity>
> queue_signature;
} /* namespace detail */
/** The queue class provides a multi-writer/multi-reader queue, pushing and popping is lock-free,
* construction/destruction has to be synchronized. It uses a freelist for memory management,
* freed nodes are pushed to the freelist and not returned to the OS before the queue is destroyed.
*
* \b Policies:
* - \ref boost::lockfree::fixed_sized, defaults to \c boost::lockfree::fixed_sized<false> \n
* Can be used to completely disable dynamic memory allocations during push in order to ensure lockfree behavior. \n
* If the data structure is configured as fixed-sized, the internal nodes are stored inside an array and they are addressed
* by array indexing. This limits the possible size of the queue to the number of elements that can be addressed by the index
* type (usually 2**16-2), but on platforms that lack double-width compare-and-exchange instructions, this is the best way
* to achieve lock-freedom.
*
* - \ref boost::lockfree::capacity, optional \n
* If this template argument is passed to the options, the size of the queue is set at compile-time.\n
* It this option implies \c fixed_sized<true>
*
* - \ref boost::lockfree::allocator, defaults to \c boost::lockfree::allocator<std::allocator<void>> \n
* Specifies the allocator that is used for the internal freelist
*
* \b Requirements:
* - T must have a copy constructor
* - T must have a trivial assignment operator
* - T must have a trivial destructor
*
* */
#ifndef BOOST_DOXYGEN_INVOKED
template <typename T,
class A0 = boost::parameter::void_,
class A1 = boost::parameter::void_,
class A2 = boost::parameter::void_>
#else
template <typename T, ...Options>
#endif
class queue
#ifdef BOOST_NO_CXX11_DELETED_FUNCTIONS
: boost::noncopyable
#endif
{
private:
#ifndef BOOST_DOXYGEN_INVOKED
#ifdef BOOST_HAS_TRIVIAL_DESTRUCTOR
BOOST_STATIC_ASSERT((boost::has_trivial_destructor<T>::value));
#endif
#ifdef BOOST_HAS_TRIVIAL_ASSIGN
BOOST_STATIC_ASSERT((boost::has_trivial_assign<T>::value));
#endif
typedef typename detail::queue_signature::bind<A0, A1, A2>::type bound_args;
static const bool has_capacity = detail::extract_capacity<bound_args>::has_capacity;
static const size_t capacity = detail::extract_capacity<bound_args>::capacity + 1; // the queue uses one dummy node
static const bool fixed_sized = detail::extract_fixed_sized<bound_args>::value;
static const bool node_based = !(has_capacity || fixed_sized);
static const bool compile_time_sized = has_capacity;
struct BOOST_LOCKFREE_CACHELINE_ALIGNMENT node
{
typedef typename detail::select_tagged_handle<node, node_based>::tagged_handle_type tagged_node_handle;
typedef typename detail::select_tagged_handle<node, node_based>::handle_type handle_type;
node(T const & v, handle_type null_handle):
data(v)//, next(tagged_node_handle(0, 0))
{
/* increment tag to avoid ABA problem */
tagged_node_handle old_next = next.load(memory_order_relaxed);
tagged_node_handle new_next (null_handle, old_next.get_next_tag());
next.store(new_next, memory_order_release);
}
node (handle_type null_handle):
next(tagged_node_handle(null_handle, 0))
{}
node(void)
{}
atomic<tagged_node_handle> next;
T data;
};
typedef typename detail::extract_allocator<bound_args, node>::type node_allocator;
typedef typename detail::select_freelist<node, node_allocator, compile_time_sized, fixed_sized, capacity>::type pool_t;
typedef typename pool_t::tagged_node_handle tagged_node_handle;
typedef typename detail::select_tagged_handle<node, node_based>::handle_type handle_type;
void initialize(void)
{
node * n = pool.template construct<true, false>(pool.null_handle());
tagged_node_handle dummy_node(pool.get_handle(n), 0);
head_.store(dummy_node, memory_order_relaxed);
tail_.store(dummy_node, memory_order_release);
}
struct implementation_defined
{
typedef node_allocator allocator;
typedef std::size_t size_type;
};
#endif
#ifndef BOOST_NO_CXX11_DELETED_FUNCTIONS
queue(queue const &) = delete;
queue(queue &&) = delete;
const queue& operator=( const queue& ) = delete;
#endif
public:
typedef T value_type;
typedef typename implementation_defined::allocator allocator;
typedef typename implementation_defined::size_type size_type;
/**
* \return true, if implementation is lock-free.
*
* \warning It only checks, if the queue head and tail nodes and the freelist can be modified in a lock-free manner.
* On most platforms, the whole implementation is lock-free, if this is true. Using c++0x-style atomics, there is
* no possibility to provide a completely accurate implementation, because one would need to test every internal
* node, which is impossible if further nodes will be allocated from the operating system.
* */
bool is_lock_free (void) const
{
return head_.is_lock_free() && tail_.is_lock_free() && pool.is_lock_free();
}
//! Construct queue
// @{
queue(void):
head_(tagged_node_handle(0, 0)),
tail_(tagged_node_handle(0, 0)),
pool(node_allocator(), capacity)
{
BOOST_ASSERT(has_capacity);
initialize();
}
template <typename U>
explicit queue(typename node_allocator::template rebind<U>::other const & alloc):
head_(tagged_node_handle(0, 0)),
tail_(tagged_node_handle(0, 0)),
pool(alloc, capacity)
{
BOOST_STATIC_ASSERT(has_capacity);
initialize();
}
explicit queue(allocator const & alloc):
head_(tagged_node_handle(0, 0)),
tail_(tagged_node_handle(0, 0)),
pool(alloc, capacity)
{
BOOST_ASSERT(has_capacity);
initialize();
}
// @}
//! Construct queue, allocate n nodes for the freelist.
// @{
explicit queue(size_type n):
head_(tagged_node_handle(0, 0)),
tail_(tagged_node_handle(0, 0)),
pool(node_allocator(), n + 1)
{
BOOST_ASSERT(!has_capacity);
initialize();
}
template <typename U>
queue(size_type n, typename node_allocator::template rebind<U>::other const & alloc):
head_(tagged_node_handle(0, 0)),
tail_(tagged_node_handle(0, 0)),
pool(alloc, n + 1)
{
BOOST_STATIC_ASSERT(!has_capacity);
initialize();
}
// @}
/** \copydoc boost::lockfree::stack::reserve
* */
void reserve(size_type n)
{
pool.template reserve<true>(n);
}
/** \copydoc boost::lockfree::stack::reserve_unsafe
* */
void reserve_unsafe(size_type n)
{
pool.template reserve<false>(n);
}
/** Destroys queue, free all nodes from freelist.
* */
~queue(void)
{
T dummy;
while(unsynchronized_pop(dummy))
{}
pool.template destruct<false>(head_.load(memory_order_relaxed));
}
/** Check if the queue is empty
*
* \return true, if the queue is empty, false otherwise
* \note The result is only accurate, if no other thread modifies the queue. Therefore it is rarely practical to use this
* value in program logic.
* */
bool empty(void)
{
return pool.get_handle(head_.load()) == pool.get_handle(tail_.load());
}
/** Pushes object t to the queue.
*
* \post object will be pushed to the queue, if internal node can be allocated
* \returns true, if the push operation is successful.
*
* \note Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
* from the OS. This may not be lock-free.
* */
bool push(T const & t)
{
return do_push<false>(t);
}
/** Pushes object t to the queue.
*
* \post object will be pushed to the queue, if internal node can be allocated
* \returns true, if the push operation is successful.
*
* \note Thread-safe and non-blocking. If internal memory pool is exhausted, operation will fail
* \throws if memory allocator throws
* */
bool bounded_push(T const & t)
{
return do_push<true>(t);
}
private:
#ifndef BOOST_DOXYGEN_INVOKED
template <bool Bounded>
bool do_push(T const & t)
{
using detail::likely;
node * n = pool.template construct<true, Bounded>(t, pool.null_handle());
handle_type node_handle = pool.get_handle(n);
if (n == NULL)
return false;
for (;;) {
tagged_node_handle tail = tail_.load(memory_order_acquire);
node * tail_node = pool.get_pointer(tail);
tagged_node_handle next = tail_node->next.load(memory_order_acquire);
node * next_ptr = pool.get_pointer(next);
tagged_node_handle tail2 = tail_.load(memory_order_acquire);
if (likely(tail == tail2)) {
if (next_ptr == 0) {
tagged_node_handle new_tail_next(node_handle, next.get_next_tag());
if ( tail_node->next.compare_exchange_weak(next, new_tail_next) ) {
tagged_node_handle new_tail(node_handle, tail.get_next_tag());
tail_.compare_exchange_strong(tail, new_tail);
return true;
}
}
else {
tagged_node_handle new_tail(pool.get_handle(next_ptr), tail.get_next_tag());
tail_.compare_exchange_strong(tail, new_tail);
}
}
}
}
#endif
public:
/** Pushes object t to the queue.
*
* \post object will be pushed to the queue, if internal node can be allocated
* \returns true, if the push operation is successful.
*
* \note Not Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
* from the OS. This may not be lock-free.
* \throws if memory allocator throws
* */
bool unsynchronized_push(T const & t)
{
node * n = pool.template construct<false, false>(t, pool.null_handle());
if (n == NULL)
return false;
for (;;) {
tagged_node_handle tail = tail_.load(memory_order_relaxed);
tagged_node_handle next = tail->next.load(memory_order_relaxed);
node * next_ptr = next.get_ptr();
if (next_ptr == 0) {
tail->next.store(tagged_node_handle(n, next.get_next_tag()), memory_order_relaxed);
tail_.store(tagged_node_handle(n, tail.get_next_tag()), memory_order_relaxed);
return true;
}
else
tail_.store(tagged_node_handle(next_ptr, tail.get_next_tag()), memory_order_relaxed);
}
}
/** Pops object from queue.
*
* \post if pop operation is successful, object will be copied to ret.
* \returns true, if the pop operation is successful, false if queue was empty.
*
* \note Thread-safe and non-blocking
* */
bool pop (T & ret)
{
return pop<T>(ret);
}
/** Pops object from queue.
*
* \pre type U must be constructible by T and copyable, or T must be convertible to U
* \post if pop operation is successful, object will be copied to ret.
* \returns true, if the pop operation is successful, false if queue was empty.
*
* \note Thread-safe and non-blocking
* */
template <typename U>
bool pop (U & ret)
{
using detail::likely;
for (;;) {
tagged_node_handle head = head_.load(memory_order_acquire);
node * head_ptr = pool.get_pointer(head);
tagged_node_handle tail = tail_.load(memory_order_acquire);
tagged_node_handle next = head_ptr->next.load(memory_order_acquire);
node * next_ptr = pool.get_pointer(next);
tagged_node_handle head2 = head_.load(memory_order_acquire);
if (likely(head == head2)) {
if (pool.get_handle(head) == pool.get_handle(tail)) {
if (next_ptr == 0)
return false;
tagged_node_handle new_tail(pool.get_handle(next), tail.get_next_tag());
tail_.compare_exchange_strong(tail, new_tail);
} else {
if (next_ptr == 0)
/* this check is not part of the original algorithm as published by michael and scott
*
* however we reuse the tagged_ptr part for the freelist and clear the next part during node
* allocation. we can observe a null-pointer here.
* */
continue;
detail::copy_payload(next_ptr->data, ret);
tagged_node_handle new_head(pool.get_handle(next), head.get_next_tag());
if (head_.compare_exchange_weak(head, new_head)) {
pool.template destruct<true>(head);
return true;
}
}
}
}
}
/** Pops object from queue.
*
* \post if pop operation is successful, object will be copied to ret.
* \returns true, if the pop operation is successful, false if queue was empty.
*
* \note Not thread-safe, but non-blocking
*
* */
bool unsynchronized_pop (T & ret)
{
return unsynchronized_pop<T>(ret);
}
/** Pops object from queue.
*
* \pre type U must be constructible by T and copyable, or T must be convertible to U
* \post if pop operation is successful, object will be copied to ret.
* \returns true, if the pop operation is successful, false if queue was empty.
*
* \note Not thread-safe, but non-blocking
*
* */
template <typename U>
bool unsynchronized_pop (U & ret)
{
for (;;) {
tagged_node_handle head = head_.load(memory_order_relaxed);
node * head_ptr = pool.get_pointer(head);
tagged_node_handle tail = tail_.load(memory_order_relaxed);
tagged_node_handle next = head_ptr->next.load(memory_order_relaxed);
node * next_ptr = pool.get_pointer(next);
if (pool.get_handle(head) == pool.get_handle(tail)) {
if (next_ptr == 0)
return false;
tagged_node_handle new_tail(pool.get_handle(next), tail.get_next_tag());
tail_.store(new_tail);
} else {
if (next_ptr == 0)
/* this check is not part of the original algorithm as published by michael and scott
*
* however we reuse the tagged_ptr part for the freelist and clear the next part during node
* allocation. we can observe a null-pointer here.
* */
continue;
detail::copy_payload(next_ptr->data, ret);
tagged_node_handle new_head(pool.get_handle(next), head.get_next_tag());
head_.store(new_head);
pool.template destruct<false>(head);
return true;
}
}
}
/** consumes one element via a functor
*
* pops one element from the queue and applies the functor on this object
*
* \returns true, if one element was consumed
*
* \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
* */
template <typename Functor>
bool consume_one(Functor & f)
{
T element;
bool success = pop(element);
if (success)
f(element);
return success;
}
/// \copydoc boost::lockfree::queue::consume_one(Functor & rhs)
template <typename Functor>
bool consume_one(Functor const & f)
{
T element;
bool success = pop(element);
if (success)
f(element);
return success;
}
/** consumes all elements via a functor
*
* sequentially pops all elements from the queue and applies the functor on each object
*
* \returns number of elements that are consumed
*
* \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
* */
template <typename Functor>
size_t consume_all(Functor & f)
{
size_t element_count = 0;
while (consume_one(f))
element_count += 1;
return element_count;
}
/// \copydoc boost::lockfree::queue::consume_all(Functor & rhs)
template <typename Functor>
size_t consume_all(Functor const & f)
{
size_t element_count = 0;
while (consume_one(f))
element_count += 1;
return element_count;
}
private:
#ifndef BOOST_DOXYGEN_INVOKED
atomic<tagged_node_handle> head_;
static const int padding_size = BOOST_LOCKFREE_CACHELINE_BYTES - sizeof(tagged_node_handle);
char padding1[padding_size];
atomic<tagged_node_handle> tail_;
char padding2[padding_size];
pool_t pool;
#endif
};
} /* namespace lockfree */
} /* namespace boost */
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
#endif /* BOOST_LOCKFREE_FIFO_HPP_INCLUDED */