boost/intrusive/splaytree_algorithms.hpp
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2007-2012
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
// The implementation of splay trees is based on the article and code published
// in C++ Users Journal "Implementing Splay Trees in C++" (September 1, 2005).
//
// The code has been modified and (supposely) improved by Ion Gaztanaga.
// Here is the header of the file used as base code:
//
// splay_tree.h -- implementation of a STL compatible splay tree.
//
// Copyright (c) 2004 Ralf Mattethat
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// Please send questions, comments, complaints, performance data, etc to
// ralf.mattethat@teknologisk.dk
//
// Requirements for element type
// * must be copy-constructible
// * destructor must not throw exception
//
// Methods marked with note A only throws an exception if the evaluation of the
// predicate throws an exception. If an exception is thrown the call has no
// effect on the containers state
//
// Methods marked with note B only throws an exception if the coppy constructor
// or assignment operator of the predicate throws an exception. If an exception
// is thrown the call has no effect on the containers state
//
// iterators are only invalidated, if the element pointed to by the iterator
// is deleted. The same goes for element references
//
#ifndef BOOST_INTRUSIVE_SPLAYTREE_ALGORITHMS_HPP
#define BOOST_INTRUSIVE_SPLAYTREE_ALGORITHMS_HPP
#include <boost/intrusive/detail/config_begin.hpp>
#include <boost/intrusive/detail/assert.hpp>
#include <boost/intrusive/intrusive_fwd.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <cstddef>
#include <boost/intrusive/detail/utilities.hpp>
#include <boost/intrusive/detail/tree_algorithms.hpp>
namespace boost {
namespace intrusive {
/// @cond
namespace detail {
template<class NodeTraits>
struct splaydown_rollback
{
typedef typename NodeTraits::node_ptr node_ptr;
splaydown_rollback( const node_ptr *pcur_subtree, const node_ptr & header
, const node_ptr & leftmost , const node_ptr & rightmost)
: pcur_subtree_(pcur_subtree) , header_(header)
, leftmost_(leftmost) , rightmost_(rightmost)
{}
void release()
{ pcur_subtree_ = 0; }
~splaydown_rollback()
{
if(pcur_subtree_){
//Exception can only be thrown by comp, but
//tree invariants still hold. *pcur_subtree is the current root
//so link it to the header.
NodeTraits::set_parent(*pcur_subtree_, header_);
NodeTraits::set_parent(header_, *pcur_subtree_);
//Recover leftmost/rightmost pointers
NodeTraits::set_left (header_, leftmost_);
NodeTraits::set_right(header_, rightmost_);
}
}
const node_ptr *pcur_subtree_;
node_ptr header_, leftmost_, rightmost_;
};
} //namespace detail {
/// @endcond
//! A splay tree is an implementation of a binary search tree. The tree is
//! self balancing using the splay algorithm as described in
//!
//! "Self-Adjusting Binary Search Trees
//! by Daniel Dominic Sleator and Robert Endre Tarjan
//! AT&T Bell Laboratories, Murray Hill, NJ
//! Journal of the ACM, Vol 32, no 3, July 1985, pp 652-686
//! splaytree_algorithms is configured with a NodeTraits class, which encapsulates the
//! information about the node to be manipulated. NodeTraits must support the
//! following interface:
//!
//! <b>Typedefs</b>:
//!
//! <tt>node</tt>: The type of the node that forms the circular list
//!
//! <tt>node_ptr</tt>: A pointer to a node
//!
//! <tt>const_node_ptr</tt>: A pointer to a const node
//!
//! <b>Static functions</b>:
//!
//! <tt>static node_ptr get_parent(const_node_ptr n);</tt>
//!
//! <tt>static void set_parent(node_ptr n, node_ptr parent);</tt>
//!
//! <tt>static node_ptr get_left(const_node_ptr n);</tt>
//!
//! <tt>static void set_left(node_ptr n, node_ptr left);</tt>
//!
//! <tt>static node_ptr get_right(const_node_ptr n);</tt>
//!
//! <tt>static void set_right(node_ptr n, node_ptr right);</tt>
template<class NodeTraits>
class splaytree_algorithms
{
/// @cond
private:
typedef detail::tree_algorithms<NodeTraits> tree_algorithms;
/// @endcond
public:
typedef typename NodeTraits::node node;
typedef NodeTraits node_traits;
typedef typename NodeTraits::node_ptr node_ptr;
typedef typename NodeTraits::const_node_ptr const_node_ptr;
//! This type is the information that will be
//! filled by insert_unique_check
typedef typename tree_algorithms::insert_commit_data insert_commit_data;
/// @cond
private:
static node_ptr uncast(const const_node_ptr & ptr)
{ return pointer_traits<node_ptr>::const_cast_from(ptr); }
/// @endcond
public:
static node_ptr begin_node(const const_node_ptr & header)
{ return tree_algorithms::begin_node(header); }
static node_ptr end_node(const const_node_ptr & header)
{ return tree_algorithms::end_node(header); }
//! <b>Requires</b>: node is a node of the tree or an node initialized
//! by init(...).
//!
//! <b>Effects</b>: Returns true if the node is initialized by init().
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
static bool unique(const const_node_ptr & node)
{ return tree_algorithms::unique(node); }
static void unlink(const node_ptr & node)
{ tree_algorithms::unlink(node); }
//! <b>Requires</b>: node1 and node2 can't be header nodes
//! of two trees.
//!
//! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
//! in the position node2 before the function. node2 will be inserted in the
//! position node1 had before the function.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! node1 and node2 are not equivalent according to the ordering rules.
//!
//!Experimental function
static void swap_nodes(const node_ptr & node1, const node_ptr & node2)
{
if(node1 == node2)
return;
node_ptr header1(tree_algorithms::get_header(node1)), header2(tree_algorithms::get_header(node2));
swap_nodes(node1, header1, node2, header2);
}
//! <b>Requires</b>: node1 and node2 can't be header nodes
//! of two trees with header header1 and header2.
//!
//! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
//! in the position node2 before the function. node2 will be inserted in the
//! position node1 had before the function.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! node1 and node2 are not equivalent according to the ordering rules.
//!
//!Experimental function
static void swap_nodes(const node_ptr & node1, const node_ptr & header1, const node_ptr & node2, const node_ptr & header2)
{ tree_algorithms::swap_nodes(node1, header1, node2, header2); }
//! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
//! and new_node must not be inserted in a tree.
//!
//! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
//! tree with new_node. The tree does not need to be rebalanced
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! new_node is not equivalent to node_to_be_replaced according to the
//! ordering rules. This function is faster than erasing and inserting
//! the node, since no rebalancing and comparison is needed.
//!
//!Experimental function
static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & new_node)
{
if(node_to_be_replaced == new_node)
return;
replace_node(node_to_be_replaced, tree_algorithms::get_header(node_to_be_replaced), new_node);
}
//! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
//! with header "header" and new_node must not be inserted in a tree.
//!
//! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
//! tree with new_node. The tree does not need to be rebalanced
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! new_node is not equivalent to node_to_be_replaced according to the
//! ordering rules. This function is faster than erasing and inserting
//! the node, since no rebalancing or comparison is needed.
//!
//!Experimental function
static void replace_node(const node_ptr & node_to_be_replaced, const node_ptr & header, const node_ptr & new_node)
{ tree_algorithms::replace_node(node_to_be_replaced, header, new_node); }
//! <b>Requires</b>: p is a node from the tree except the header.
//!
//! <b>Effects</b>: Returns the next node of the tree.
//!
//! <b>Complexity</b>: Average constant time.
//!
//! <b>Throws</b>: Nothing.
static node_ptr next_node(const node_ptr & p)
{ return tree_algorithms::next_node(p); }
//! <b>Requires</b>: p is a node from the tree except the leftmost node.
//!
//! <b>Effects</b>: Returns the previous node of the tree.
//!
//! <b>Complexity</b>: Average constant time.
//!
//! <b>Throws</b>: Nothing.
static node_ptr prev_node(const node_ptr & p)
{ return tree_algorithms::prev_node(p); }
//! <b>Requires</b>: node must not be part of any tree.
//!
//! <b>Effects</b>: After the function unique(node) == true.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
static void init(const node_ptr & node)
{ tree_algorithms::init(node); }
//! <b>Requires</b>: node must not be part of any tree.
//!
//! <b>Effects</b>: Initializes the header to represent an empty tree.
//! unique(header) == true.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
static void init_header(const node_ptr & header)
{ tree_algorithms::init_header(header); }
//! <b>Requires</b>: "disposer" must be an object function
//! taking a node_ptr parameter and shouldn't throw.
//!
//! <b>Effects</b>: Empties the target tree calling
//! <tt>void disposer::operator()(const node_ptr &)</tt> for every node of the tree
//! except the header.
//!
//! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
//! number of elements of tree target tree when calling this function.
//!
//! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
template<class Disposer>
static void clear_and_dispose(const node_ptr & header, Disposer disposer)
{ tree_algorithms::clear_and_dispose(header, disposer); }
//! <b>Requires</b>: node is a node of the tree but it's not the header.
//!
//! <b>Effects</b>: Returns the number of nodes of the subtree.
//!
//! <b>Complexity</b>: Linear time.
//!
//! <b>Throws</b>: Nothing.
static std::size_t count(const const_node_ptr & node)
{ return tree_algorithms::count(node); }
//! <b>Requires</b>: header is the header node of the tree.
//!
//! <b>Effects</b>: Returns the number of nodes above the header.
//!
//! <b>Complexity</b>: Linear time.
//!
//! <b>Throws</b>: Nothing.
static std::size_t size(const const_node_ptr & header)
{ return tree_algorithms::size(header); }
//! <b>Requires</b>: header1 and header2 must be the header nodes
//! of two trees.
//!
//! <b>Effects</b>: Swaps two trees. After the function header1 will contain
//! links to the second tree and header2 will have links to the first tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
static void swap_tree(const node_ptr & header1, const node_ptr & header2)
{ return tree_algorithms::swap_tree(header1, header2); }
//! <b>Requires</b>: "header" must be the header node of a tree.
//! "commit_data" must have been obtained from a previous call to
//! "insert_unique_check". No objects should have been inserted or erased
//! from the set between the "insert_unique_check" that filled "commit_data"
//! and the call to "insert_commit".
//!
//!
//! <b>Effects</b>: Inserts new_node in the set using the information obtained
//! from the "commit_data" that a previous "insert_check" filled.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: This function has only sense if a "insert_unique_check" has been
//! previously executed to fill "commit_data". No value should be inserted or
//! erased between the "insert_check" and "insert_commit" calls.
static void insert_unique_commit
(const node_ptr & header, const node_ptr & new_value, const insert_commit_data &commit_data)
{ tree_algorithms::insert_unique_commit(header, new_value, commit_data); }
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares KeyType with a node_ptr.
//!
//! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
//! tree according to "comp" and obtains the needed information to realize
//! a constant-time node insertion if there is no equivalent node.
//!
//! <b>Returns</b>: If there is an equivalent value
//! returns a pair containing a node_ptr to the already present node
//! and false. If there is not equivalent key can be inserted returns true
//! in the returned pair's boolean and fills "commit_data" that is meant to
//! be used with the "insert_commit" function to achieve a constant-time
//! insertion function.
//!
//! <b>Complexity</b>: Average complexity is at most logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
//!
//! <b>Notes</b>: This function is used to improve performance when constructing
//! a node is expensive and the user does not want to have two equivalent nodes
//! in the tree: if there is an equivalent value
//! the constructed object must be discarded. Many times, the part of the
//! node that is used to impose the order is much cheaper to construct
//! than the node and this function offers the possibility to use that part
//! to check if the insertion will be successful.
//!
//! If the check is successful, the user can construct the node and use
//! "insert_commit" to insert the node in constant-time. This gives a total
//! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
//!
//! "commit_data" remains valid for a subsequent "insert_unique_commit" only
//! if no more objects are inserted or erased from the set.
template<class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, bool> insert_unique_check
(const node_ptr & header, const KeyType &key
,KeyNodePtrCompare comp, insert_commit_data &commit_data)
{
splay_down(header, key, comp);
return tree_algorithms::insert_unique_check(header, key, comp, commit_data);
}
template<class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, bool> insert_unique_check
(const node_ptr & header, const node_ptr &hint, const KeyType &key
,KeyNodePtrCompare comp, insert_commit_data &commit_data)
{
splay_down(header, key, comp);
return tree_algorithms::insert_unique_check(header, hint, key, comp, commit_data);
}
static bool is_header(const const_node_ptr & p)
{ return tree_algorithms::is_header(p); }
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns an node_ptr to the element that is equivalent to
//! "key" according to "comp" or "header" if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static node_ptr find
(const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp, bool splay = true)
{
if(splay)
splay_down(uncast(header), key, comp);
node_ptr end = uncast(header);
node_ptr y = lower_bound(header, key, comp, false);
node_ptr r = (y == end || comp(key, y)) ? end : y;
return r;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
//! all elements that are equivalent to "key" according to "comp" or an
//! empty range that indicates the position where those elements would be
//! if they there are no equivalent elements.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, node_ptr> equal_range
(const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp, bool splay = true)
{
//if(splay)
//splay_down(uncast(header), key, comp);
std::pair<node_ptr, node_ptr> ret =
tree_algorithms::equal_range(header, key, comp);
if(splay)
splay_up(ret.first, uncast(header));
return ret;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If
//! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false.
//!
//! <b>Effects</b>: Returns an a pair with the following criteria:
//!
//! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise
//!
//! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
//!
//! <b>Note</b>: This function can be more efficient than calling upper_bound
//! and lower_bound for lower_key and upper_key.
template<class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, node_ptr> bounded_range
(const const_node_ptr & header, const KeyType &lower_key, const KeyType &upper_key, KeyNodePtrCompare comp
, bool left_closed, bool right_closed, bool splay = true)
{
std::pair<node_ptr, node_ptr> ret =
tree_algorithms::bounded_range(header, lower_key, upper_key, comp, left_closed, right_closed);
if(splay)
splay_up(ret.first, uncast(header));
return ret;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns an node_ptr to the first element that is
//! not less than "key" according to "comp" or "header" if that element does
//! not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static node_ptr lower_bound
(const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp, bool splay = true)
{
//if(splay)
//splay_down(uncast(header), key, comp);
node_ptr y = tree_algorithms::lower_bound(header, key, comp);
if(splay)
splay_up(y, uncast(header));
return y;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns an node_ptr to the first element that is greater
//! than "key" according to "comp" or "header" if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static node_ptr upper_bound
(const const_node_ptr & header, const KeyType &key, KeyNodePtrCompare comp, bool splay = true)
{
//if(splay)
//splay_down(uncast(header), key, comp);
node_ptr y = tree_algorithms::upper_bound(header, key, comp);
if(splay)
splay_up(y, uncast(header));
return y;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! NodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares two node_ptrs. "hint" is node from
//! the "header"'s tree.
//!
//! <b>Effects</b>: Inserts new_node into the tree, using "hint" as a hint to
//! where it will be inserted. If "hint" is the upper_bound
//! the insertion takes constant time (two comparisons in the worst case).
//!
//! <b>Complexity</b>: Logarithmic in general, but it is amortized
//! constant time if new_node is inserted immediately before "hint".
//!
//! <b>Throws</b>: If "comp" throws.
template<class NodePtrCompare>
static node_ptr insert_equal
(const node_ptr & header, const node_ptr & hint, const node_ptr & new_node, NodePtrCompare comp)
{
splay_down(header, new_node, comp);
return tree_algorithms::insert_equal(header, hint, new_node, comp);
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! "pos" must be a valid iterator or header (end) node.
//! "pos" must be an iterator pointing to the successor to "new_node"
//! once inserted according to the order of already inserted nodes. This function does not
//! check "pos" and this precondition must be guaranteed by the caller.
//!
//! <b>Effects</b>: Inserts new_node into the tree before "pos".
//!
//! <b>Complexity</b>: Constant-time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: If "pos" is not the successor of the newly inserted "new_node"
//! tree invariants might be broken.
static node_ptr insert_before
(const node_ptr & header, const node_ptr & pos, const node_ptr & new_node)
{
tree_algorithms::insert_before(header, pos, new_node);
splay_up(new_node, header);
return new_node;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! "new_node" must be, according to the used ordering no less than the
//! greatest inserted key.
//!
//! <b>Effects</b>: Inserts new_node into the tree before "pos".
//!
//! <b>Complexity</b>: Constant-time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: If "new_node" is less than the greatest inserted key
//! tree invariants are broken. This function is slightly faster than
//! using "insert_before".
static void push_back(const node_ptr & header, const node_ptr & new_node)
{
tree_algorithms::push_back(header, new_node);
splay_up(new_node, header);
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! "new_node" must be, according to the used ordering, no greater than the
//! lowest inserted key.
//!
//! <b>Effects</b>: Inserts new_node into the tree before "pos".
//!
//! <b>Complexity</b>: Constant-time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: If "new_node" is greater than the lowest inserted key
//! tree invariants are broken. This function is slightly faster than
//! using "insert_before".
static void push_front(const node_ptr & header, const node_ptr & new_node)
{
tree_algorithms::push_front(header, new_node);
splay_up(new_node, header);
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! NodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares two node_ptrs.
//!
//! <b>Effects</b>: Inserts new_node into the tree before the upper bound
//! according to "comp".
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class NodePtrCompare>
static node_ptr insert_equal_upper_bound
(const node_ptr & header, const node_ptr & new_node, NodePtrCompare comp)
{
splay_down(header, new_node, comp);
return tree_algorithms::insert_equal_upper_bound(header, new_node, comp);
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! NodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares two node_ptrs.
//!
//! <b>Effects</b>: Inserts new_node into the tree before the lower bound
//! according to "comp".
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class NodePtrCompare>
static node_ptr insert_equal_lower_bound
(const node_ptr & header, const node_ptr & new_node, NodePtrCompare comp)
{
splay_down(header, new_node, comp);
return tree_algorithms::insert_equal_lower_bound(header, new_node, comp);
}
//! <b>Requires</b>: "cloner" must be a function
//! object taking a node_ptr and returning a new cloned node of it. "disposer" must
//! take a node_ptr and shouldn't throw.
//!
//! <b>Effects</b>: First empties target tree calling
//! <tt>void disposer::operator()(const node_ptr &)</tt> for every node of the tree
//! except the header.
//!
//! Then, duplicates the entire tree pointed by "source_header" cloning each
//! source node with <tt>node_ptr Cloner::operator()(const node_ptr &)</tt> to obtain
//! the nodes of the target tree. If "cloner" throws, the cloned target nodes
//! are disposed using <tt>void disposer(const node_ptr &)</tt>.
//!
//! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
//! number of elements of tree target tree when calling this function.
//!
//! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
template <class Cloner, class Disposer>
static void clone
(const const_node_ptr & source_header, const node_ptr & target_header, Cloner cloner, Disposer disposer)
{ tree_algorithms::clone(source_header, target_header, cloner, disposer); }
// delete node | complexity : constant | exception : nothrow
static void erase(const node_ptr & header, const node_ptr & z, bool splay = true)
{
// node_base* n = t->right;
// if( t->left != node_ptr() ){
// node_base* l = t->previous();
// splay_up( l , t );
// n = t->left;
// n->right = t->right;
// if( n->right != node_ptr() )
// n->right->parent = n;
// }
//
// if( n != node_ptr() )
// n->parent = t->parent;
//
// if( t->parent->left == t )
// t->parent->left = n;
// else // must be ( t->parent->right == t )
// t->parent->right = n;
//
// if( data_->parent == t )
// data_->parent = find_leftmost();
//posibility 1
if(splay && NodeTraits::get_left(z)){
splay_up(prev_node(z), header);
}
/*
//possibility 2
if(splay && NodeTraits::get_left(z) != node_ptr() ){
node_ptr l = NodeTraits::get_left(z);
splay_up(l, header);
}*//*
if(splay && NodeTraits::get_left(z) != node_ptr() ){
node_ptr l = prev_node(z);
splay_up_impl(l, z);
}*/
/*
//possibility 4
if(splay){
splay_up(z, header);
}*/
//if(splay)
//splay_up(z, header);
tree_algorithms::erase(header, z);
}
// bottom-up splay, use data_ as parent for n | complexity : logarithmic | exception : nothrow
static void splay_up(const node_ptr & node, const node_ptr & header)
{
// If (node == header) do a splay for the right most node instead
// this is to boost performance of equal_range/count on equivalent containers in the case
// where there are many equal elements at the end
node_ptr n((node == header) ? NodeTraits::get_right(header) : node);
node_ptr t(header);
if( n == t ) return;
for( ;; ){
node_ptr p(NodeTraits::get_parent(n));
node_ptr g(NodeTraits::get_parent(p));
if( p == t ) break;
if( g == t ){
// zig
rotate(n);
}
else if ((NodeTraits::get_left(p) == n && NodeTraits::get_left(g) == p) ||
(NodeTraits::get_right(p) == n && NodeTraits::get_right(g) == p) ){
// zig-zig
rotate(p);
rotate(n);
}
else{
// zig-zag
rotate(n);
rotate(n);
}
}
}
// top-down splay | complexity : logarithmic | exception : strong, note A
template<class KeyType, class KeyNodePtrCompare>
static node_ptr splay_down(const node_ptr & header, const KeyType &key, KeyNodePtrCompare comp)
{
if(!NodeTraits::get_parent(header))
return header;
//Most splay tree implementations use a dummy/null node to implement.
//this function. This has some problems for a generic library like Intrusive:
//
// * The node might not have a default constructor.
// * The default constructor could throw.
//
//We already have a header node. Leftmost and rightmost nodes of the tree
//are not changed when splaying (because the invariants of the tree don't
//change) We can back up them, use the header as the null node and
//reassign old values after the function has been completed.
node_ptr t = NodeTraits::get_parent(header);
//Check if tree has a single node
if(!NodeTraits::get_left(t) && !NodeTraits::get_right(t))
return t;
//Backup leftmost/rightmost
node_ptr leftmost (NodeTraits::get_left(header));
node_ptr rightmost(NodeTraits::get_right(header));
{
//Anti-exception rollback, recovers the original header node if an exception is thrown.
detail::splaydown_rollback<NodeTraits> rollback(&t, header, leftmost, rightmost);
node_ptr null_node = header;
node_ptr l = null_node;
node_ptr r = null_node;
for( ;; ){
if(comp(key, t)){
if(NodeTraits::get_left(t) == node_ptr() )
break;
if(comp(key, NodeTraits::get_left(t))){
t = tree_algorithms::rotate_right(t);
if(NodeTraits::get_left(t) == node_ptr())
break;
link_right(t, r);
}
else if(comp(NodeTraits::get_left(t), key)){
link_right(t, r);
if(NodeTraits::get_right(t) == node_ptr() )
break;
link_left(t, l);
}
else{
link_right(t, r);
}
}
else if(comp(t, key)){
if(NodeTraits::get_right(t) == node_ptr() )
break;
if(comp(NodeTraits::get_right(t), key)){
t = tree_algorithms::rotate_left( t );
if(NodeTraits::get_right(t) == node_ptr() )
break;
link_left(t, l);
}
else if(comp(key, NodeTraits::get_right(t))){
link_left(t, l);
if(NodeTraits::get_left(t) == node_ptr())
break;
link_right(t, r);
}
else{
link_left(t, l);
}
}
else{
break;
}
}
assemble(t, l, r, null_node);
rollback.release();
}
//Now recover the original header except for the
//splayed root node.
//t is the current root
NodeTraits::set_parent(header, t);
NodeTraits::set_parent(t, header);
//Recover leftmost/rightmost pointers
NodeTraits::set_left (header, leftmost);
NodeTraits::set_right(header, rightmost);
return t;
}
//! <b>Requires</b>: header must be the header of a tree.
//!
//! <b>Effects</b>: Rebalances the tree.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear.
static void rebalance(const node_ptr & header)
{ tree_algorithms::rebalance(header); }
//! <b>Requires</b>: old_root is a node of a tree.
//!
//! <b>Effects</b>: Rebalances the subtree rooted at old_root.
//!
//! <b>Returns</b>: The new root of the subtree.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear.
static node_ptr rebalance_subtree(const node_ptr & old_root)
{ return tree_algorithms::rebalance_subtree(old_root); }
//! <b>Requires</b>: "n" must be a node inserted in a tree.
//!
//! <b>Effects</b>: Returns a pointer to the header node of the tree.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
static node_ptr get_header(const node_ptr & n)
{ return tree_algorithms::get_header(n); }
private:
/// @cond
// assemble the three sub-trees into new tree pointed to by t | complexity : constant | exception : nothrow
static void assemble(const node_ptr &t, const node_ptr & l, const node_ptr & r, const const_node_ptr & null_node )
{
NodeTraits::set_right(l, NodeTraits::get_left(t));
NodeTraits::set_left(r, NodeTraits::get_right(t));
if(NodeTraits::get_right(l) != node_ptr()){
NodeTraits::set_parent(NodeTraits::get_right(l), l);
}
if(NodeTraits::get_left(r) != node_ptr()){
NodeTraits::set_parent(NodeTraits::get_left(r), r);
}
NodeTraits::set_left (t, NodeTraits::get_right(null_node));
NodeTraits::set_right(t, NodeTraits::get_left(null_node));
if( NodeTraits::get_left(t) != node_ptr() ){
NodeTraits::set_parent(NodeTraits::get_left(t), t);
}
if( NodeTraits::get_right(t) ){
NodeTraits::set_parent(NodeTraits::get_right(t), t);
}
}
// break link to left child node and attach it to left tree pointed to by l | complexity : constant | exception : nothrow
static void link_left(node_ptr & t, node_ptr & l)
{
NodeTraits::set_right(l, t);
NodeTraits::set_parent(t, l);
l = t;
t = NodeTraits::get_right(t);
}
// break link to right child node and attach it to right tree pointed to by r | complexity : constant | exception : nothrow
static void link_right(node_ptr & t, node_ptr & r)
{
NodeTraits::set_left(r, t);
NodeTraits::set_parent(t, r);
r = t;
t = NodeTraits::get_left(t);
}
// rotate n with its parent | complexity : constant | exception : nothrow
static void rotate(const node_ptr & n)
{
node_ptr p = NodeTraits::get_parent(n);
node_ptr g = NodeTraits::get_parent(p);
//Test if g is header before breaking tree
//invariants that would make is_header invalid
bool g_is_header = is_header(g);
if(NodeTraits::get_left(p) == n){
NodeTraits::set_left(p, NodeTraits::get_right(n));
if(NodeTraits::get_left(p) != node_ptr())
NodeTraits::set_parent(NodeTraits::get_left(p), p);
NodeTraits::set_right(n, p);
}
else{ // must be ( p->right == n )
NodeTraits::set_right(p, NodeTraits::get_left(n));
if(NodeTraits::get_right(p) != node_ptr())
NodeTraits::set_parent(NodeTraits::get_right(p), p);
NodeTraits::set_left(n, p);
}
NodeTraits::set_parent(p, n);
NodeTraits::set_parent(n, g);
if(g_is_header){
if(NodeTraits::get_parent(g) == p)
NodeTraits::set_parent(g, n);
else{//must be ( g->right == p )
BOOST_INTRUSIVE_INVARIANT_ASSERT(false);
NodeTraits::set_right(g, n);
}
}
else{
if(NodeTraits::get_left(g) == p)
NodeTraits::set_left(g, n);
else //must be ( g->right == p )
NodeTraits::set_right(g, n);
}
}
/// @endcond
};
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_SPLAYTREE_ALGORITHMS_HPP