...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
namespace boost{ namespace math{ namespace tr1{ extern "C"{ // [5.2.1.1] associated Laguerre polynomials: double assoc_laguerre(unsigned n, unsigned m, double x); float assoc_laguerref(unsigned n, unsigned m, float x); long double assoc_laguerrel(unsigned n, unsigned m, long double x); // [5.2.1.2] associated Legendre functions: double assoc_legendre(unsigned l, unsigned m, double x); float assoc_legendref(unsigned l, unsigned m, float x); long double assoc_legendrel(unsigned l, unsigned m, long double x); // [5.2.1.3] beta function: double beta(double x, double y); float betaf(float x, float y); long double betal(long double x, long double y); // [5.2.1.4] (complete) elliptic integral of the first kind: double comp_ellint_1(double k); float comp_ellint_1f(float k); long double comp_ellint_1l(long double k); // [5.2.1.5] (complete) elliptic integral of the second kind: double comp_ellint_2(double k); float comp_ellint_2f(float k); long double comp_ellint_2l(long double k); // [5.2.1.6] (complete) elliptic integral of the third kind: double comp_ellint_3(double k, double nu); float comp_ellint_3f(float k, float nu); long double comp_ellint_3l(long double k, long double nu); // [5.2.1.8] regular modified cylindrical Bessel functions: double cyl_bessel_i(double nu, double x); float cyl_bessel_if(float nu, float x); long double cyl_bessel_il(long double nu, long double x); // [5.2.1.9] cylindrical Bessel functions (of the first kind): double cyl_bessel_j(double nu, double x); float cyl_bessel_jf(float nu, float x); long double cyl_bessel_jl(long double nu, long double x); // [5.2.1.10] irregular modified cylindrical Bessel functions: double cyl_bessel_k(double nu, double x); float cyl_bessel_kf(float nu, float x); long double cyl_bessel_kl(long double nu, long double x); // [5.2.1.11] cylindrical Neumann functions; // cylindrical Bessel functions (of the second kind): double cyl_neumann(double nu, double x); float cyl_neumannf(float nu, float x); long double cyl_neumannl(long double nu, long double x); // [5.2.1.12] (incomplete) elliptic integral of the first kind: double ellint_1(double k, double phi); float ellint_1f(float k, float phi); long double ellint_1l(long double k, long double phi); // [5.2.1.13] (incomplete) elliptic integral of the second kind: double ellint_2(double k, double phi); float ellint_2f(float k, float phi); long double ellint_2l(long double k, long double phi); // [5.2.1.14] (incomplete) elliptic integral of the third kind: double ellint_3(double k, double nu, double phi); float ellint_3f(float k, float nu, float phi); long double ellint_3l(long double k, long double nu, long double phi); // [5.2.1.15] exponential integral: double expint(double x); float expintf(float x); long double expintl(long double x); // [5.2.1.16] Hermite polynomials: double hermite(unsigned n, double x); float hermitef(unsigned n, float x); long double hermitel(unsigned n, long double x); // [5.2.1.18] Laguerre polynomials: double laguerre(unsigned n, double x); float laguerref(unsigned n, float x); long double laguerrel(unsigned n, long double x); // [5.2.1.19] Legendre polynomials: double legendre(unsigned l, double x); float legendref(unsigned l, float x); long double legendrel(unsigned l, long double x); // [5.2.1.20] Riemann zeta function: double riemann_zeta(double); float riemann_zetaf(float); long double riemann_zetal(long double); // [5.2.1.21] spherical Bessel functions (of the first kind): double sph_bessel(unsigned n, double x); float sph_besself(unsigned n, float x); long double sph_bessell(unsigned n, long double x); // [5.2.1.22] spherical associated Legendre functions: double sph_legendre(unsigned l, unsigned m, double theta); float sph_legendref(unsigned l, unsigned m, float theta); long double sph_legendrel(unsigned l, unsigned m, long double theta); // [5.2.1.23] spherical Neumann functions; // spherical Bessel functions (of the second kind): double sph_neumann(unsigned n, double x); float sph_neumannf(unsigned n, float x); long double sph_neumannl(unsigned n, long double x); }}}} // namespaces
In addition sufficient additional overloads of the double
versions of the above functions are provided, so that calling the function
with any mixture of float
,
double
, long
double
, or integer
arguments is supported, with the return type determined by the result
type calculation rules.
For example:
expintf(2.0f); // float version, returns float. expint(2.0f); // also calls the float version and returns float. expint(2.0); // double version, returns double. expintl(2.0L); // long double version, returns a long double. expint(2.0L); // also calls the long double version. expint(2); // integer argument is treated as a double, returns double.
// [5.2.1.1] associated Laguerre polynomials: double assoc_laguerre(unsigned n, unsigned m, double x); float assoc_laguerref(unsigned n, unsigned m, float x); long double assoc_laguerrel(unsigned n, unsigned m, long double x);
The assoc_laguerre functions return:
See also laguerre for the full template (header only) version of this function.
// [5.2.1.2] associated Legendre functions: double assoc_legendre(unsigned l, unsigned m, double x); float assoc_legendref(unsigned l, unsigned m, float x); long double assoc_legendrel(unsigned l, unsigned m, long double x);
The assoc_legendre functions return:
See also legendre_p for the full template (header only) version of this function.
// [5.2.1.3] beta function: double beta(double x, double y); float betaf(float x, float y); long double betal(long double x, long double y);
Returns the beta function of x and y:
See also beta for the full template (header only) version of this function.
// [5.2.1.4] (complete) elliptic integral of the first kind: double comp_ellint_1(double k); float comp_ellint_1f(float k); long double comp_ellint_1l(long double k);
Returns the complete elliptic integral of the first kind of k:
See also ellint_1 for the full template (header only) version of this function.
// [5.2.1.5] (complete) elliptic integral of the second kind: double comp_ellint_2(double k); float comp_ellint_2f(float k); long double comp_ellint_2l(long double k);
Returns the complete elliptic integral of the second kind of k:
See also ellint_2 for the full template (header only) version of this function.
// [5.2.1.6] (complete) elliptic integral of the third kind: double comp_ellint_3(double k, double nu); float comp_ellint_3f(float k, float nu); long double comp_ellint_3l(long double k, long double nu);
Returns the complete elliptic integral of the third kind of k and nu:
See also ellint_3 for the full template (header only) version of this function.
// [5.2.1.8] regular modified cylindrical Bessel functions: double cyl_bessel_i(double nu, double x); float cyl_bessel_if(float nu, float x); long double cyl_bessel_il(long double nu, long double x);
Returns the modified bessel function of the first kind of nu and x:
See also cyl_bessel_i for the full template (header only) version of this function.
// [5.2.1.9] cylindrical Bessel functions (of the first kind): double cyl_bessel_j(double nu, double x); float cyl_bessel_jf(float nu, float x); long double cyl_bessel_jl(long double nu, long double x);
Returns the bessel function of the first kind of nu and x:
See also cyl_bessel_j for the full template (header only) version of this function.
// [5.2.1.10] irregular modified cylindrical Bessel functions: double cyl_bessel_k(double nu, double x); float cyl_bessel_kf(float nu, float x); long double cyl_bessel_kl(long double nu, long double x);
Returns the modified bessel function of the second kind of nu and x:
See also cyl_bessel_k for the full template (header only) version of this function.
// [5.2.1.11] cylindrical Neumann functions; // cylindrical Bessel functions (of the second kind): double cyl_neumann(double nu, double x); float cyl_neumannf(float nu, float x); long double cyl_neumannl(long double nu, long double x);
Returns the bessel function of the second kind (Neumann function) of nu and x:
See also cyl_neumann for the full template (header only) version of this function.
// [5.2.1.12] (incomplete) elliptic integral of the first kind: double ellint_1(double k, double phi); float ellint_1f(float k, float phi); long double ellint_1l(long double k, long double phi);
Returns the incomplete elliptic integral of the first kind of k and phi:
See also ellint_1 for the full template (header only) version of this function.
// [5.2.1.13] (incomplete) elliptic integral of the second kind: double ellint_2(double k, double phi); float ellint_2f(float k, float phi); long double ellint_2l(long double k, long double phi);
Returns the incomplete elliptic integral of the second kind of k and phi:
See also ellint_2 for the full template (header only) version of this function.
// [5.2.1.14] (incomplete) elliptic integral of the third kind: double ellint_3(double k, double nu, double phi); float ellint_3f(float k, float nu, float phi); long double ellint_3l(long double k, long double nu, long double phi);
Returns the incomplete elliptic integral of the third kind of k, nu and phi:
See also ellint_3 for the full template (header only) version of this function.
// [5.2.1.15] exponential integral: double expint(double x); float expintf(float x); long double expintl(long double x);
Returns the exponential integral Ei of x:
See also expint for the full template (header only) version of this function.
// [5.2.1.16] Hermite polynomials: double hermite(unsigned n, double x); float hermitef(unsigned n, float x); long double hermitel(unsigned n, long double x);
Returns the n'th Hermite polynomial of x:
See also hermite for the full template (header only) version of this function.
// [5.2.1.18] Laguerre polynomials: double laguerre(unsigned n, double x); float laguerref(unsigned n, float x); long double laguerrel(unsigned n, long double x);
Returns the n'th Laguerre polynomial of x:
See also laguerre for the full template (header only) version of this function.
// [5.2.1.19] Legendre polynomials: double legendre(unsigned l, double x); float legendref(unsigned l, float x); long double legendrel(unsigned l, long double x);
Returns the l'th Legendre polynomial of x:
See also legendre_p for the full template (header only) version of this function.
// [5.2.1.20] Riemann zeta function: double riemann_zeta(double); float riemann_zetaf(float); long double riemann_zetal(long double);
Returns the Riemann Zeta function of x:
See also zeta for the full template (header only) version of this function.
// [5.2.1.21] spherical Bessel functions (of the first kind): double sph_bessel(unsigned n, double x); float sph_besself(unsigned n, float x); long double sph_bessell(unsigned n, long double x);
Returns the spherical Bessel function of the first kind of x jn(x):
See also sph_bessel for the full template (header only) version of this function.
// [5.2.1.22] spherical associated Legendre functions: double sph_legendre(unsigned l, unsigned m, double theta); float sph_legendref(unsigned l, unsigned m, float theta); long double sph_legendrel(unsigned l, unsigned m, long double theta);
Returns the spherical associated Legendre function of l, m and theta:
See also spherical_harmonic for the full template (header only) version of this function.
// [5.2.1.23] spherical Neumann functions; // spherical Bessel functions (of the second kind): double sph_neumann(unsigned n, double x); float sph_neumannf(unsigned n, float x); long double sph_neumannl(unsigned n, long double x);
Returns the spherical Neumann function of x yn(x):
See also sph_bessel for the full template (header only) version of this function.
// [5.2.1.7] confluent hypergeometric functions: double conf_hyperg(double a, double c, double x); float conf_hypergf(float a, float c, float x); long double conf_hypergl(long double a, long double c, long double x); // [5.2.1.17] hypergeometric functions: double hyperg(double a, double b, double c, double x); float hypergf(float a, float b, float c, float x); long double hypergl(long double a, long double b, long double c, long double x);
Note | |
---|---|
These two functions are not implemented as they are not believed to be numerically stable. |