Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of boost. Click here for the latest Boost documentation.
PrevUpHomeNext

Class template flat_multimap

boost::container::flat_multimap

Synopsis

// In header: <boost/container/flat_map.hpp>

template<typename Key, typename T, 
         typename Pred = std::less< std::pair< Key, T> >, 
         typename A = std::allocator<T> > 
class flat_multimap {
public:
  // types
  typedef Key                                    key_type;              
  typedef T                                      mapped_type;           
  typedef Pred                                   key_compare;           
  typedef std::pair< key_type, mapped_type >     value_type;            
  typedef allocator_traits_type::pointer         pointer;               
  typedef allocator_traits_type::const_pointer   const_pointer;         
  typedef allocator_traits_type::reference       reference;             
  typedef allocator_traits_type::const_reference const_reference;       
  typedef impl_tree_t::size_type                 size_type;             
  typedef impl_tree_t::difference_type           difference_type;       
  typedef unspecified                            value_compare;         
  typedef unspecified                            iterator;              
  typedef unspecified                            const_iterator;        
  typedef unspecified                            reverse_iterator;      
  typedef unspecified                            const_reverse_iterator;
  typedef A                                      allocator_type;        
  typedef A                                      stored_allocator_type; 
  typedef impl_value_type                        movable_value_type;      // Standard extension for C++03 compilers with non-movable std::pair. 

  // construct/copy/destruct
  flat_multimap();
  explicit flat_multimap(const Pred &, 
                         const allocator_type & = allocator_type());
  template<typename InputIterator> 
    flat_multimap(InputIterator, InputIterator, const Pred & = Pred(), 
                  const allocator_type & = allocator_type());
  template<typename InputIterator> 
    flat_multimap(ordered_range_t, InputIterator, InputIterator, 
                  const Pred & = Pred(), 
                  const allocator_type & = allocator_type());
  flat_multimap(const flat_multimap &);
  flat_multimap(BOOST_RV_REF(flat_multimap));
  flat_multimap(const flat_multimap &, const allocator_type &);
  flat_multimap(BOOST_RV_REF(flat_multimap), const allocator_type &);
  flat_multimap& operator=(BOOST_COPY_ASSIGN_REF(flat_multimap));
  flat_multimap& operator=(BOOST_RV_REF(flat_multimap));

  // public member functions
  key_compare key_comp() const;
  value_compare value_comp() const;
  allocator_type get_allocator() const;
  const stored_allocator_type & get_stored_allocator() const;
  stored_allocator_type & get_stored_allocator();
  iterator begin();
  const_iterator begin() const;
  iterator end();
  const_iterator end() const;
  reverse_iterator rbegin();
  const_reverse_iterator rbegin() const;
  reverse_iterator rend();
  const_reverse_iterator rend() const;
  const_iterator cbegin() const;
  const_iterator cend() const;
  const_reverse_iterator crbegin() const;
  const_reverse_iterator crend() const;
  bool empty() const;
  size_type size() const;
  size_type max_size() const;
  void swap(flat_multimap &);
  iterator insert(const value_type &);
  iterator insert(BOOST_RV_REF(value_type));
  iterator insert(BOOST_RV_REF(impl_value_type));
  iterator insert(const_iterator, const value_type &);
  iterator insert(const_iterator, BOOST_RV_REF(value_type));
  iterator insert(const_iterator, BOOST_RV_REF(impl_value_type));
  template<typename InputIterator> void insert(InputIterator, InputIterator);
  template<typename InputIterator> 
    void insert(ordered_range_t, InputIterator, InputIterator);
  template<class... Args> iterator emplace(Args &&...);
  template<class... Args> iterator emplace_hint(const_iterator, Args &&...);
  iterator erase(const_iterator);
  size_type erase(const key_type &);
  iterator erase(const_iterator, const_iterator);
  void clear();
  void shrink_to_fit();
  iterator find(const key_type &);
  const_iterator find(const key_type &) const;
  size_type count(const key_type &) const;
  iterator lower_bound(const key_type &);
  const_iterator lower_bound(const key_type &) const;
  iterator upper_bound(const key_type &);
  const_iterator upper_bound(const key_type &) const;
  std::pair< iterator, iterator > equal_range(const key_type &);
  std::pair< const_iterator, const_iterator > 
  equal_range(const key_type &) const;
  size_type capacity() const;
  void reserve(size_type);
};

Description

A flat_multimap is a kind of associative container that supports equivalent keys (possibly containing multiple copies of the same key value) and provides for fast retrieval of values of another type T based on the keys. The flat_multimap class supports random-access iterators.

A flat_multimap satisfies all of the requirements of a container and of a reversible container and of an associative container. For a flat_multimap<Key,T> the key_type is Key and the value_type is std::pair<Key,T> (unlike std::multimap<Key, T> which value_type is std::pair<const Key, T>).

Pred is the ordering function for Keys (e.g. std::less<Key>).

A is the allocator to allocate the value_types (e.g. allocator< std::pair<Key, T> >).

flat_multimap public construct/copy/destruct

  1. flat_multimap();

    Effects: Default constructs an empty flat_map.

    Complexity: Constant.

  2. explicit flat_multimap(const Pred & comp, 
                           const allocator_type & a = allocator_type());

    Effects: Constructs an empty flat_multimap using the specified comparison object and allocator.

    Complexity: Constant.

  3. template<typename InputIterator> 
      flat_multimap(InputIterator first, InputIterator last, 
                    const Pred & comp = Pred(), 
                    const allocator_type & a = allocator_type());

    Effects: Constructs an empty flat_multimap using the specified comparison object and allocator, and inserts elements from the range [first ,last ).

    Complexity: Linear in N if the range [first ,last ) is already sorted using comp and otherwise N logN, where N is last - first.

  4. template<typename InputIterator> 
      flat_multimap(ordered_range_t, InputIterator first, InputIterator last, 
                    const Pred & comp = Pred(), 
                    const allocator_type & a = allocator_type());

    Effects: Constructs an empty flat_multimap using the specified comparison object and allocator, and inserts elements from the ordered range [first ,last). This function is more efficient than the normal range creation for ordered ranges.

    Requires: [first ,last) must be ordered according to the predicate.

    Complexity: Linear in N.

    Note: Non-standard extension.

  5. flat_multimap(const flat_multimap & x);

    Effects: Copy constructs a flat_multimap.

    Complexity: Linear in x.size().

  6. flat_multimap(BOOST_RV_REF(flat_multimap) x);

    Effects: Move constructs a flat_multimap. Constructs *this using x's resources.

    Complexity: Constant.

    Postcondition: x is emptied.

  7. flat_multimap(const flat_multimap & x, const allocator_type & a);

    Effects: Copy constructs a flat_multimap using the specified allocator.

    Complexity: Linear in x.size().

  8. flat_multimap(BOOST_RV_REF(flat_multimap) x, const allocator_type & a);

    Effects: Move constructs a flat_multimap using the specified allocator. Constructs *this using x's resources.

    Complexity: Constant if a == x.get_allocator(), linear otherwise.

  9. flat_multimap& operator=(BOOST_COPY_ASSIGN_REF(flat_multimap) x);

    Effects: Makes *this a copy of x.

    Complexity: Linear in x.size().

  10. flat_multimap& operator=(BOOST_RV_REF(flat_multimap) mx);

    Effects: this->swap(x.get()).

    Complexity: Constant.

flat_multimap public member functions

  1. key_compare key_comp() const;

    Effects: Returns the comparison object out of which a was constructed.

    Complexity: Constant.

  2. value_compare value_comp() const;

    Effects: Returns an object of value_compare constructed out of the comparison object.

    Complexity: Constant.

  3. allocator_type get_allocator() const;

    Effects: Returns a copy of the Allocator that was passed to the object's constructor.

    Complexity: Constant.

  4. const stored_allocator_type & get_stored_allocator() const;
  5. stored_allocator_type & get_stored_allocator();
  6. iterator begin();

    Effects: Returns an iterator to the first element contained in the container.

    Throws: Nothing.

    Complexity: Constant.

  7. const_iterator begin() const;

    Effects: Returns a const_iterator to the first element contained in the container.

    Throws: Nothing.

    Complexity: Constant.

  8. iterator end();

    Effects: Returns an iterator to the end of the container.

    Throws: Nothing.

    Complexity: Constant.

  9. const_iterator end() const;

    Effects: Returns a const_iterator to the end of the container.

    Throws: Nothing.

    Complexity: Constant.

  10. reverse_iterator rbegin();

    Effects: Returns a reverse_iterator pointing to the beginning of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  11. const_reverse_iterator rbegin() const;

    Effects: Returns a const_reverse_iterator pointing to the beginning of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  12. reverse_iterator rend();

    Effects: Returns a reverse_iterator pointing to the end of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  13. const_reverse_iterator rend() const;

    Effects: Returns a const_reverse_iterator pointing to the end of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  14. const_iterator cbegin() const;

    Effects: Returns a const_iterator to the first element contained in the container.

    Throws: Nothing.

    Complexity: Constant.

  15. const_iterator cend() const;

    Effects: Returns a const_iterator to the end of the container.

    Throws: Nothing.

    Complexity: Constant.

  16. const_reverse_iterator crbegin() const;

    Effects: Returns a const_reverse_iterator pointing to the beginning of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  17. const_reverse_iterator crend() const;

    Effects: Returns a const_reverse_iterator pointing to the end of the reversed container.

    Throws: Nothing.

    Complexity: Constant.

  18. bool empty() const;

    Effects: Returns true if the container contains no elements.

    Throws: Nothing.

    Complexity: Constant.

  19. size_type size() const;

    Effects: Returns the number of the elements contained in the container.

    Throws: Nothing.

    Complexity: Constant.

  20. size_type max_size() const;

    Effects: Returns the largest possible size of the container.

    Throws: Nothing.

    Complexity: Constant.

  21. void swap(flat_multimap & x);

    Effects: Swaps the contents of *this and x.

    Throws: Nothing.

    Complexity: Constant.

  22. iterator insert(const value_type & x);

    Effects: Inserts x and returns the iterator pointing to the newly inserted element.

    Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  23. iterator insert(BOOST_RV_REF(value_type) x);

    Effects: Inserts a new value move-constructed from x and returns the iterator pointing to the newly inserted element.

    Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  24. iterator insert(BOOST_RV_REF(impl_value_type) x);

    Effects: Inserts a new value move-constructed from x and returns the iterator pointing to the newly inserted element.

    Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  25. iterator insert(const_iterator position, const value_type & x);

    Effects: Inserts a copy of x in the container. p is a hint pointing to where the insert should start to search.

    Returns: An iterator pointing to the element with key equivalent to the key of x.

    Complexity: Logarithmic search time (constant time if the value is to be inserted before p) plus linear insertion to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  26. iterator insert(const_iterator position, BOOST_RV_REF(value_type) x);

    Effects: Inserts a value move constructed from x in the container. p is a hint pointing to where the insert should start to search.

    Returns: An iterator pointing to the element with key equivalent to the key of x.

    Complexity: Logarithmic search time (constant time if the value is to be inserted before p) plus linear insertion to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  27. iterator insert(const_iterator position, BOOST_RV_REF(impl_value_type) x);

    Effects: Inserts a value move constructed from x in the container. p is a hint pointing to where the insert should start to search.

    Returns: An iterator pointing to the element with key equivalent to the key of x.

    Complexity: Logarithmic search time (constant time if the value is to be inserted before p) plus linear insertion to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  28. template<typename InputIterator> 
      void insert(InputIterator first, InputIterator last);

    Requires: first, last are not iterators into *this.

    Effects: inserts each element from the range [first,last) .

    Complexity: At most N log(size()+N) (N is the distance from first to last) search time plus N*size() insertion time.

    Note: If an element is inserted it might invalidate elements.

  29. template<typename InputIterator> 
      void insert(ordered_range_t, InputIterator first, InputIterator last);

    Requires: first, last are not iterators into *this.

    Requires: [first ,last) must be ordered according to the predicate.

    Effects: inserts each element from the range [first,last) if and only if there is no element with key equivalent to the key of that element. This function is more efficient than the normal range creation for ordered ranges.

    Complexity: At most N log(size()+N) (N is the distance from first to last) search time plus N*size() insertion time.

    Note: If an element is inserted it might invalidate elements.

  30. template<class... Args> iterator emplace(Args &&... args);

    Effects: Inserts an object of type T constructed with std::forward<Args>(args)... and returns the iterator pointing to the newly inserted element.

    Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  31. template<class... Args> 
      iterator emplace_hint(const_iterator hint, Args &&... args);

    Effects: Inserts an object of type T constructed with std::forward<Args>(args)... in the container. p is a hint pointing to where the insert should start to search.

    Returns: An iterator pointing to the element with key equivalent to the key of x.

    Complexity: Logarithmic search time (constant time if the value is to be inserted before p) plus linear insertion to the elements with bigger keys than x.

    Note: If an element is inserted it might invalidate elements.

  32. iterator erase(const_iterator position);

    Effects: Erases the element pointed to by position.

    Returns: Returns an iterator pointing to the element immediately following q prior to the element being erased. If no such element exists, returns end().

    Complexity: Linear to the elements with keys bigger than position

    Note: Invalidates elements with keys not less than the erased element.

  33. size_type erase(const key_type & x);

    Effects: Erases all elements in the container with key equivalent to x.

    Returns: Returns the number of erased elements.

    Complexity: Logarithmic search time plus erasure time linear to the elements with bigger keys.

  34. iterator erase(const_iterator first, const_iterator last);

    Effects: Erases all the elements in the range [first, last).

    Returns: Returns last.

    Complexity: size()*N where N is the distance from first to last.

    Complexity: Logarithmic search time plus erasure time linear to the elements with bigger keys.

  35. void clear();

    Effects: erase(a.begin(),a.end()).

    Postcondition: size() == 0.

    Complexity: linear in size().

  36. void shrink_to_fit();
    Effects: Tries to deallocate the excess of memory created

    Throws: If memory allocation throws, or T's copy constructor throws.

    Complexity: Linear to size().

  37. iterator find(const key_type & x);

    Returns: An iterator pointing to an element with the key equivalent to x, or end() if such an element is not found.

    Complexity: Logarithmic.

  38. const_iterator find(const key_type & x) const;

    Returns: An const_iterator pointing to an element with the key equivalent to x, or end() if such an element is not found.

    Complexity: Logarithmic.

  39. size_type count(const key_type & x) const;

    Returns: The number of elements with key equivalent to x.

    Complexity: log(size())+count(k)

  40. iterator lower_bound(const key_type & x);

    Returns: An iterator pointing to the first element with key not less than k, or a.end() if such an element is not found.

    Complexity: Logarithmic

  41. const_iterator lower_bound(const key_type & x) const;

    Returns: A const iterator pointing to the first element with key not less than k, or a.end() if such an element is not found.

    Complexity: Logarithmic

  42. iterator upper_bound(const key_type & x);

    Returns: An iterator pointing to the first element with key not less than x, or end() if such an element is not found.

    Complexity: Logarithmic

  43. const_iterator upper_bound(const key_type & x) const;

    Returns: A const iterator pointing to the first element with key not less than x, or end() if such an element is not found.

    Complexity: Logarithmic

  44. std::pair< iterator, iterator > equal_range(const key_type & x);

    Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).

    Complexity: Logarithmic

  45. std::pair< const_iterator, const_iterator > 
    equal_range(const key_type & x) const;

    Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).

    Complexity: Logarithmic

  46. size_type capacity() const;

    Effects: Number of elements for which memory has been allocated. capacity() is always greater than or equal to size().

    Throws: Nothing.

    Complexity: Constant.

  47. void reserve(size_type count);

    Effects: If n is less than or equal to capacity(), this call has no effect. Otherwise, it is a request for allocation of additional memory. If the request is successful, then capacity() is greater than or equal to n; otherwise, capacity() is unchanged. In either case, size() is unchanged.

    Throws: If memory allocation allocation throws or T's copy constructor throws.

    Note: If capacity() is less than "count", iterators and references to to values might be invalidated.


PrevUpHomeNext