boost/graph/filtered_graph.hpp
//=======================================================================
// Copyright 1997, 1998, 1999, 2000 University of Notre Dame.
// Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_FILTERED_GRAPH_HPP
#define BOOST_FILTERED_GRAPH_HPP
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include <boost/graph/adjacency_iterator.hpp>
#include <boost/graph/detail/set_adaptor.hpp>
#include <boost/iterator/filter_iterator.hpp>
namespace boost {
//=========================================================================
// Some predicate classes.
struct keep_all {
template <typename T>
bool operator()(const T&) const { return true; }
};
// Keep residual edges (used in maximum-flow algorithms).
template <typename ResidualCapacityEdgeMap>
struct is_residual_edge {
is_residual_edge() { }
is_residual_edge(ResidualCapacityEdgeMap rcap) : m_rcap(rcap) { }
template <typename Edge>
bool operator()(const Edge& e) const {
return 0 < get(m_rcap, e);
}
ResidualCapacityEdgeMap m_rcap;
};
template <typename Set>
struct is_in_subset {
is_in_subset() : m_s(0) { }
is_in_subset(const Set& s) : m_s(&s) { }
template <typename Elt>
bool operator()(const Elt& x) const {
return set_contains(*m_s, x);
}
const Set* m_s;
};
template <typename Set>
struct is_not_in_subset {
is_not_in_subset() : m_s(0) { }
is_not_in_subset(const Set& s) : m_s(&s) { }
template <typename Elt>
bool operator()(const Elt& x) const {
return !set_contains(*m_s, x);
}
const Set* m_s;
};
namespace detail {
template <typename EdgePredicate, typename VertexPredicate, typename Graph>
struct out_edge_predicate {
out_edge_predicate() { }
out_edge_predicate(EdgePredicate ep, VertexPredicate vp,
const Graph& g)
: m_edge_pred(ep), m_vertex_pred(vp), m_g(&g) { }
template <typename Edge>
bool operator()(const Edge& e) const {
return m_edge_pred(e) && m_vertex_pred(target(e, *m_g));
}
EdgePredicate m_edge_pred;
VertexPredicate m_vertex_pred;
const Graph* m_g;
};
template <typename EdgePredicate, typename VertexPredicate, typename Graph>
struct in_edge_predicate {
in_edge_predicate() { }
in_edge_predicate(EdgePredicate ep, VertexPredicate vp,
const Graph& g)
: m_edge_pred(ep), m_vertex_pred(vp), m_g(&g) { }
template <typename Edge>
bool operator()(const Edge& e) const {
return m_edge_pred(e) && m_vertex_pred(source(e, *m_g));
}
EdgePredicate m_edge_pred;
VertexPredicate m_vertex_pred;
const Graph* m_g;
};
template <typename EdgePredicate, typename VertexPredicate, typename Graph>
struct edge_predicate {
edge_predicate() { }
edge_predicate(EdgePredicate ep, VertexPredicate vp,
const Graph& g)
: m_edge_pred(ep), m_vertex_pred(vp), m_g(&g) { }
template <typename Edge>
bool operator()(const Edge& e) const {
return m_edge_pred(e)
&& m_vertex_pred(source(e, *m_g)) && m_vertex_pred(target(e, *m_g));
}
EdgePredicate m_edge_pred;
VertexPredicate m_vertex_pred;
const Graph* m_g;
};
} // namespace detail
//===========================================================================
// Filtered Graph
struct filtered_graph_tag { };
// This base class is a stupid hack to change overload resolution
// rules for the source and target functions so that they are a
// worse match than the source and target functions defined for
// pairs in graph_traits.hpp. I feel dirty. -JGS
template <class G>
struct filtered_graph_base {
typedef graph_traits<G> Traits;
typedef typename Traits::vertex_descriptor vertex_descriptor;
typedef typename Traits::edge_descriptor edge_descriptor;
filtered_graph_base(const G& g) : m_g(g) { }
//protected:
const G& m_g;
};
template <typename Graph,
typename EdgePredicate,
typename VertexPredicate = keep_all>
class filtered_graph : public filtered_graph_base<Graph> {
typedef filtered_graph_base<Graph> Base;
typedef graph_traits<Graph> Traits;
typedef filtered_graph self;
public:
typedef Graph graph_type;
typedef detail::out_edge_predicate<EdgePredicate,
VertexPredicate, self> OutEdgePred;
typedef detail::in_edge_predicate<EdgePredicate,
VertexPredicate, self> InEdgePred;
typedef detail::edge_predicate<EdgePredicate,
VertexPredicate, self> EdgePred;
// Constructors
filtered_graph(const Graph& g, EdgePredicate ep)
: Base(g), m_edge_pred(ep) { }
filtered_graph(const Graph& g, EdgePredicate ep, VertexPredicate vp)
: Base(g), m_edge_pred(ep), m_vertex_pred(vp) { }
// Graph requirements
typedef typename Traits::vertex_descriptor vertex_descriptor;
typedef typename Traits::edge_descriptor edge_descriptor;
typedef typename Traits::directed_category directed_category;
typedef typename Traits::edge_parallel_category edge_parallel_category;
typedef typename Traits::traversal_category traversal_category;
// IncidenceGraph requirements
typedef filter_iterator<
OutEdgePred, typename Traits::out_edge_iterator
> out_edge_iterator;
typedef typename Traits::degree_size_type degree_size_type;
// AdjacencyGraph requirements
typedef typename adjacency_iterator_generator<self,
vertex_descriptor, out_edge_iterator>::type adjacency_iterator;
// BidirectionalGraph requirements
typedef filter_iterator<
InEdgePred, typename Traits::in_edge_iterator
> in_edge_iterator;
// VertexListGraph requirements
typedef filter_iterator<
VertexPredicate, typename Traits::vertex_iterator
> vertex_iterator;
typedef typename Traits::vertices_size_type vertices_size_type;
// EdgeListGraph requirements
typedef filter_iterator<
EdgePred, typename Traits::edge_iterator
> edge_iterator;
typedef typename Traits::edges_size_type edges_size_type;
typedef filtered_graph_tag graph_tag;
#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
// Bundled properties support
template<typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type&
operator[](Descriptor x)
{ return const_cast<Graph&>(this->m_g)[x]; }
template<typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type const&
operator[](Descriptor x) const
{ return this->m_g[x]; }
#endif // BOOST_GRAPH_NO_BUNDLED_PROPERTIES
static vertex_descriptor null_vertex()
{
return Graph::null_vertex();
}
//private:
EdgePredicate m_edge_pred;
VertexPredicate m_vertex_pred;
};
// Do not instantiate these unless needed
template <typename Graph,
typename EdgePredicate,
typename VertexPredicate>
struct vertex_property_type<filtered_graph<Graph, EdgePredicate, VertexPredicate> > {
typedef typename vertex_property_type<Graph>::type type;
};
template <typename Graph,
typename EdgePredicate,
typename VertexPredicate>
struct edge_property_type<filtered_graph<Graph, EdgePredicate, VertexPredicate> > {
typedef typename edge_property_type<Graph>::type type;
};
template <typename Graph,
typename EdgePredicate,
typename VertexPredicate>
struct graph_property_type<filtered_graph<Graph, EdgePredicate, VertexPredicate> > {
typedef typename graph_property_type<Graph>::type type;
};
#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
template<typename Graph, typename EdgePredicate, typename VertexPredicate>
struct vertex_bundle_type<filtered_graph<Graph, EdgePredicate,
VertexPredicate> >
: vertex_bundle_type<Graph> { };
template<typename Graph, typename EdgePredicate, typename VertexPredicate>
struct edge_bundle_type<filtered_graph<Graph, EdgePredicate,
VertexPredicate> >
: edge_bundle_type<Graph> { };
template<typename Graph, typename EdgePredicate, typename VertexPredicate>
struct graph_bundle_type<filtered_graph<Graph, EdgePredicate,
VertexPredicate> >
: graph_bundle_type<Graph> { };
#endif // BOOST_GRAPH_NO_BUNDLED_PROPERTIES
//===========================================================================
// Non-member functions for the Filtered Edge Graph
// Helper functions
template <typename Graph, typename EdgePredicate>
inline filtered_graph<Graph, EdgePredicate>
make_filtered_graph(Graph& g, EdgePredicate ep) {
return filtered_graph<Graph, EdgePredicate>(g, ep);
}
template <typename Graph, typename EdgePredicate, typename VertexPredicate>
inline filtered_graph<Graph, EdgePredicate, VertexPredicate>
make_filtered_graph(Graph& g, EdgePredicate ep, VertexPredicate vp) {
return filtered_graph<Graph, EdgePredicate, VertexPredicate>(g, ep, vp);
}
template <typename Graph, typename EdgePredicate>
inline filtered_graph<const Graph, EdgePredicate>
make_filtered_graph(const Graph& g, EdgePredicate ep) {
return filtered_graph<const Graph, EdgePredicate>(g, ep);
}
template <typename Graph, typename EdgePredicate, typename VertexPredicate>
inline filtered_graph<const Graph, EdgePredicate, VertexPredicate>
make_filtered_graph(const Graph& g, EdgePredicate ep, VertexPredicate vp) {
return filtered_graph<const Graph, EdgePredicate, VertexPredicate>(g, ep, vp);
}
template <typename G, typename EP, typename VP>
std::pair<typename filtered_graph<G, EP, VP>::vertex_iterator,
typename filtered_graph<G, EP, VP>::vertex_iterator>
vertices(const filtered_graph<G, EP, VP>& g)
{
typedef filtered_graph<G, EP, VP> Graph;
typename graph_traits<G>::vertex_iterator f, l;
boost::tie(f, l) = vertices(g.m_g);
typedef typename Graph::vertex_iterator iter;
return std::make_pair(iter(g.m_vertex_pred, f, l),
iter(g.m_vertex_pred, l, l));
}
template <typename G, typename EP, typename VP>
std::pair<typename filtered_graph<G, EP, VP>::edge_iterator,
typename filtered_graph<G, EP, VP>::edge_iterator>
edges(const filtered_graph<G, EP, VP>& g)
{
typedef filtered_graph<G, EP, VP> Graph;
typename Graph::EdgePred pred(g.m_edge_pred, g.m_vertex_pred, g);
typename graph_traits<G>::edge_iterator f, l;
boost::tie(f, l) = edges(g.m_g);
typedef typename Graph::edge_iterator iter;
return std::make_pair(iter(pred, f, l), iter(pred, l, l));
}
// An alternative for num_vertices() and num_edges() would be to
// count the number in the filtered graph. This is problematic
// because of the interaction with the vertex indices... they would
// no longer go from 0 to num_vertices(), which would cause trouble
// for algorithms allocating property storage in an array. We could
// try to create a mapping to new recalibrated indices, but I don't
// see an efficient way to do this.
//
// However, the current solution is still unsatisfactory because
// the following semantic constraints no longer hold:
// boost::tie(vi, viend) = vertices(g);
// assert(std::distance(vi, viend) == num_vertices(g));
template <typename G, typename EP, typename VP>
typename filtered_graph<G, EP, VP>::vertices_size_type
num_vertices(const filtered_graph<G, EP, VP>& g) {
return num_vertices(g.m_g);
}
template <typename G, typename EP, typename VP>
typename filtered_graph<G, EP, VP>::edges_size_type
num_edges(const filtered_graph<G, EP, VP>& g) {
return num_edges(g.m_g);
}
template <typename G>
typename filtered_graph_base<G>::vertex_descriptor
source(typename filtered_graph_base<G>::edge_descriptor e,
const filtered_graph_base<G>& g)
{
return source(e, g.m_g);
}
template <typename G>
typename filtered_graph_base<G>::vertex_descriptor
target(typename filtered_graph_base<G>::edge_descriptor e,
const filtered_graph_base<G>& g)
{
return target(e, g.m_g);
}
template <typename G, typename EP, typename VP>
std::pair<typename filtered_graph<G, EP, VP>::out_edge_iterator,
typename filtered_graph<G, EP, VP>::out_edge_iterator>
out_edges(typename filtered_graph<G, EP, VP>::vertex_descriptor u,
const filtered_graph<G, EP, VP>& g)
{
typedef filtered_graph<G, EP, VP> Graph;
typename Graph::OutEdgePred pred(g.m_edge_pred, g.m_vertex_pred, g);
typedef typename Graph::out_edge_iterator iter;
typename graph_traits<G>::out_edge_iterator f, l;
boost::tie(f, l) = out_edges(u, g.m_g);
return std::make_pair(iter(pred, f, l), iter(pred, l, l));
}
template <typename G, typename EP, typename VP>
typename filtered_graph<G, EP, VP>::degree_size_type
out_degree(typename filtered_graph<G, EP, VP>::vertex_descriptor u,
const filtered_graph<G, EP, VP>& g)
{
typename filtered_graph<G, EP, VP>::degree_size_type n = 0;
typename filtered_graph<G, EP, VP>::out_edge_iterator f, l;
for (boost::tie(f, l) = out_edges(u, g); f != l; ++f)
++n;
return n;
}
template <typename G, typename EP, typename VP>
std::pair<typename filtered_graph<G, EP, VP>::adjacency_iterator,
typename filtered_graph<G, EP, VP>::adjacency_iterator>
adjacent_vertices(typename filtered_graph<G, EP, VP>::vertex_descriptor u,
const filtered_graph<G, EP, VP>& g)
{
typedef filtered_graph<G, EP, VP> Graph;
typedef typename Graph::adjacency_iterator adjacency_iterator;
typename Graph::out_edge_iterator f, l;
boost::tie(f, l) = out_edges(u, g);
return std::make_pair(adjacency_iterator(f, const_cast<Graph*>(&g)),
adjacency_iterator(l, const_cast<Graph*>(&g)));
}
template <typename G, typename EP, typename VP>
std::pair<typename filtered_graph<G, EP, VP>::in_edge_iterator,
typename filtered_graph<G, EP, VP>::in_edge_iterator>
in_edges(typename filtered_graph<G, EP, VP>::vertex_descriptor u,
const filtered_graph<G, EP, VP>& g)
{
typedef filtered_graph<G, EP, VP> Graph;
typename Graph::InEdgePred pred(g.m_edge_pred, g.m_vertex_pred, g);
typedef typename Graph::in_edge_iterator iter;
typename graph_traits<G>::in_edge_iterator f, l;
boost::tie(f, l) = in_edges(u, g.m_g);
return std::make_pair(iter(pred, f, l), iter(pred, l, l));
}
template <typename G, typename EP, typename VP>
typename filtered_graph<G, EP, VP>::degree_size_type
in_degree(typename filtered_graph<G, EP, VP>::vertex_descriptor u,
const filtered_graph<G, EP, VP>& g)
{
typename filtered_graph<G, EP, VP>::degree_size_type n = 0;
typename filtered_graph<G, EP, VP>::in_edge_iterator f, l;
for (boost::tie(f, l) = in_edges(u, g); f != l; ++f)
++n;
return n;
}
template <typename G, typename EP, typename VP>
std::pair<typename filtered_graph<G, EP, VP>::edge_descriptor, bool>
edge(typename filtered_graph<G, EP, VP>::vertex_descriptor u,
typename filtered_graph<G, EP, VP>::vertex_descriptor v,
const filtered_graph<G, EP, VP>& g)
{
typename graph_traits<G>::edge_descriptor e;
bool exists;
boost::tie(e, exists) = edge(u, v, g.m_g);
return std::make_pair(e, exists && g.m_edge_pred(e));
}
template <typename G, typename EP, typename VP>
std::pair<typename filtered_graph<G, EP, VP>::out_edge_iterator,
typename filtered_graph<G, EP, VP>::out_edge_iterator>
edge_range(typename filtered_graph<G, EP, VP>::vertex_descriptor u,
typename filtered_graph<G, EP, VP>::vertex_descriptor v,
const filtered_graph<G, EP, VP>& g)
{
typedef filtered_graph<G, EP, VP> Graph;
typename Graph::OutEdgePred pred(g.m_edge_pred, g.m_vertex_pred, g);
typedef typename Graph::out_edge_iterator iter;
typename graph_traits<G>::out_edge_iterator f, l;
boost::tie(f, l) = edge_range(u, v, g.m_g);
return std::make_pair(iter(pred, f, l), iter(pred, l, l));
}
//===========================================================================
// Property map
template <typename G, typename EP, typename VP, typename Property>
struct property_map<filtered_graph<G, EP, VP>, Property>
: property_map<G, Property> {};
template <typename G, typename EP, typename VP, typename Property>
typename property_map<G, Property>::type
get(Property p, filtered_graph<G, EP, VP>& g)
{
return get(p, const_cast<G&>(g.m_g));
}
template <typename G, typename EP, typename VP,typename Property>
typename property_map<G, Property>::const_type
get(Property p, const filtered_graph<G, EP, VP>& g)
{
return get(p, (const G&)g.m_g);
}
template <typename G, typename EP, typename VP, typename Property,
typename Key>
typename property_map_value<G, Property>::type
get(Property p, const filtered_graph<G, EP, VP>& g, const Key& k)
{
return get(p, (const G&)g.m_g, k);
}
template <typename G, typename EP, typename VP, typename Property,
typename Key, typename Value>
void
put(Property p, const filtered_graph<G, EP, VP>& g, const Key& k,
const Value& val)
{
put(p, const_cast<G&>(g.m_g), k, val);
}
//===========================================================================
// Some filtered subgraph specializations
template <typename Graph, typename Set>
struct vertex_subset_filter {
typedef filtered_graph<Graph, keep_all, is_in_subset<Set> > type;
};
template <typename Graph, typename Set>
inline typename vertex_subset_filter<Graph, Set>::type
make_vertex_subset_filter(Graph& g, const Set& s) {
typedef typename vertex_subset_filter<Graph, Set>::type Filter;
is_in_subset<Set> p(s);
return Filter(g, keep_all(), p);
}
// This is misspelled, but present for backwards compatibility; new code
// should use the version below that has the correct spelling.
template <typename Graph, typename Set>
struct vertex_subset_compliment_filter {
typedef filtered_graph<Graph, keep_all, is_not_in_subset<Set> > type;
};
template <typename Graph, typename Set>
inline typename vertex_subset_compliment_filter<Graph, Set>::type
make_vertex_subset_compliment_filter(Graph& g, const Set& s) {
typedef typename vertex_subset_compliment_filter<Graph, Set>::type Filter;
is_not_in_subset<Set> p(s);
return Filter(g, keep_all(), p);
}
template <typename Graph, typename Set>
struct vertex_subset_complement_filter {
typedef filtered_graph<Graph, keep_all, is_not_in_subset<Set> > type;
};
template <typename Graph, typename Set>
inline typename vertex_subset_complement_filter<Graph, Set>::type
make_vertex_subset_complement_filter(Graph& g, const Set& s) {
typedef typename vertex_subset_complement_filter<Graph, Set>::type Filter;
is_not_in_subset<Set> p(s);
return Filter(g, keep_all(), p);
}
// Filter that uses a property map whose value_type is a boolean
template <typename PropertyMap>
struct property_map_filter {
property_map_filter() { }
property_map_filter(const PropertyMap& property_map) :
m_property_map(property_map) { }
template <typename Key>
bool operator()(const Key& key) const {
return (get(m_property_map, key));
}
private :
PropertyMap m_property_map;
};
} // namespace boost
#endif // BOOST_FILTERED_GRAPH_HPP