boost/graph/distributed/crauser_et_al_shortest_paths.hpp
// Copyright (C) 2004-2006 The Trustees of Indiana University.
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Andrew Lumsdaine
/**************************************************************************
* This source file implements the variation on Dijkstra's algorithm *
* presented by Crauser et al. in: *
* *
* Andreas Crauser, Kurt Mehlhorn, Ulrich Meyer, and Peter *
* Sanders. A Parallelization of Dijkstra's Shortest Path *
* Algorithm. In Lubos Brim, Jozef Gruska, and Jiri Zlatuska, *
* editors, Mathematical Foundations of Computer Science (MFCS), *
* volume 1450 of Lecture Notes in Computer Science, pages *
* 722--731, 1998. Springer. *
* *
* This implementation is, however, restricted to the distributed-memory *
* case, where the work is distributed by virtue of the vertices being *
* distributed. In a shared-memory (single address space) context, we *
* would want to add an explicit balancing step. *
**************************************************************************/
#ifndef BOOST_GRAPH_CRAUSER_ET_AL_SHORTEST_PATHS_HPP
#define BOOST_GRAPH_CRAUSER_ET_AL_SHORTEST_PATHS_HPP
#ifndef BOOST_GRAPH_USE_MPI
#error "Parallel BGL files should not be included unless <boost/graph/use_mpi.hpp> has been included"
#endif
#include <boost/assert.hpp>
#include <boost/graph/distributed/detail/dijkstra_shortest_paths.hpp>
#include <boost/graph/parallel/algorithm.hpp>
#include <functional>
#include <boost/graph/iteration_macros.hpp>
#include <boost/property_map/property_map_iterator.hpp>
#include <boost/type_traits/is_same.hpp>
#include <algorithm>
#include <boost/property_map/parallel/caching_property_map.hpp>
#include <boost/pending/indirect_cmp.hpp>
#include <boost/graph/distributed/detail/remote_update_set.hpp>
#include <vector>
#include <boost/graph/breadth_first_search.hpp>
#include <boost/graph/dijkstra_shortest_paths.hpp>
#include <boost/graph/parallel/container_traits.hpp>
#ifdef PBGL_ACCOUNTING
# include <boost/graph/accounting.hpp>
# include <numeric>
#endif // PBGL_ACCOUNTING
#ifdef MUTABLE_QUEUE
# include <boost/pending/mutable_queue.hpp>
#endif
namespace boost { namespace graph { namespace distributed {
#ifdef PBGL_ACCOUNTING
struct crauser_et_al_shortest_paths_stats_t
{
/* Total wall-clock time used by the algorithm.*/
accounting::time_type execution_time;
/* The number of vertices deleted in each superstep. */
std::vector<std::size_t> deleted_vertices;
template<typename OutputStream>
void print(OutputStream& out)
{
double avg_deletions = std::accumulate(deleted_vertices.begin(),
deleted_vertices.end(),
0.0);
avg_deletions /= deleted_vertices.size();
out << "Problem = \"Single-Source Shortest Paths\"\n"
<< "Algorithm = \"Crauser et al\"\n"
<< "Function = crauser_et_al_shortest_paths\n"
<< "Wall clock time = " << accounting::print_time(execution_time)
<< "\nSupersteps = " << deleted_vertices.size() << "\n"
<< "Avg. deletions per superstep = " << avg_deletions << "\n";
}
};
static crauser_et_al_shortest_paths_stats_t crauser_et_al_shortest_paths_stats;
#endif
namespace detail {
/************************************************************************
* Function objects that perform distance comparisons modified by the *
* minimum or maximum edge weights. *
************************************************************************/
template<typename Vertex, typename DistanceMap, typename MinInWeightMap,
typename Combine, typename Compare>
struct min_in_distance_compare
: std::binary_function<Vertex, Vertex, bool>
{
min_in_distance_compare(DistanceMap d, MinInWeightMap m,
Combine combine, Compare compare)
: distance_map(d), min_in_weight(m), combine(combine),
compare(compare)
{
}
bool operator()(const Vertex& x, const Vertex& y) const
{
return compare(combine(get(distance_map, x), -get(min_in_weight, x)),
combine(get(distance_map, y), -get(min_in_weight, y)));
}
private:
DistanceMap distance_map;
MinInWeightMap min_in_weight;
Combine combine;
Compare compare;
};
template<typename Vertex, typename DistanceMap, typename MinOutWeightMap,
typename Combine, typename Compare>
struct min_out_distance_compare
: std::binary_function<Vertex, Vertex, bool>
{
min_out_distance_compare(DistanceMap d, MinOutWeightMap m,
Combine combine, Compare compare)
: distance_map(d), min_out_weight(m), combine(combine),
compare(compare)
{
}
bool operator()(const Vertex& x, const Vertex& y) const
{
return compare(combine(get(distance_map, x), get(min_out_weight, x)),
combine(get(distance_map, y), get(min_out_weight, y)));
}
private:
DistanceMap distance_map;
MinOutWeightMap min_out_weight;
Combine combine;
Compare compare;
};
/************************************************************************/
/************************************************************************
* Dijkstra queue that implements Crauser et al.'s criteria. This queue *
* actually stores three separate priority queues, to help expose all *
* vertices that can be processed in a single phase. *
************************************************************************/
template<typename Graph, typename Combine,
typename Compare, typename VertexIndexMap, typename DistanceMap,
typename PredecessorMap, typename MinOutWeightMap,
typename MinInWeightMap>
class crauser_et_al_dijkstra_queue
: public graph::detail::remote_update_set<
crauser_et_al_dijkstra_queue<
Graph, Combine, Compare, VertexIndexMap, DistanceMap,
PredecessorMap, MinOutWeightMap, MinInWeightMap>,
typename boost::graph::parallel::process_group_type<Graph>::type,
typename dijkstra_msg_value<DistanceMap, PredecessorMap>::type,
typename property_map<Graph, vertex_owner_t>::const_type>
{
typedef typename graph_traits<Graph>::vertex_descriptor
vertex_descriptor;
typedef crauser_et_al_dijkstra_queue self_type;
typedef dijkstra_msg_value<DistanceMap, PredecessorMap> msg_value_creator;
typedef typename msg_value_creator::type msg_value_type;
typedef typename graph_traits<Graph>::vertices_size_type
vertices_size_type;
typedef typename property_map<Graph, vertex_owner_t>::const_type
OwnerPropertyMap;
typedef typename boost::graph::parallel::process_group_type<Graph>::type
process_group_type;
typedef graph::detail::remote_update_set<self_type, process_group_type,
msg_value_type, OwnerPropertyMap>
inherited;
// Priority queue for tentative distances
typedef indirect_cmp<DistanceMap, Compare> dist_queue_compare_type;
typedef typename property_traits<DistanceMap>::value_type distance_type;
#ifdef MUTABLE_QUEUE
typedef mutable_queue<vertex_descriptor, std::vector<vertex_descriptor>,
dist_queue_compare_type, VertexIndexMap> dist_queue_type;
#else
typedef relaxed_heap<vertex_descriptor, dist_queue_compare_type,
VertexIndexMap> dist_queue_type;
#endif // MUTABLE_QUEUE
// Priority queue for OUT criteria
typedef min_out_distance_compare<vertex_descriptor, DistanceMap,
MinOutWeightMap, Combine, Compare>
out_queue_compare_type;
#ifdef MUTABLE_QUEUE
typedef mutable_queue<vertex_descriptor, std::vector<vertex_descriptor>,
out_queue_compare_type, VertexIndexMap> out_queue_type;
#else
typedef relaxed_heap<vertex_descriptor, out_queue_compare_type,
VertexIndexMap> out_queue_type;
#endif // MUTABLE_QUEUE
// Priority queue for IN criteria
typedef min_in_distance_compare<vertex_descriptor, DistanceMap,
MinInWeightMap, Combine, Compare>
in_queue_compare_type;
#ifdef MUTABLE_QUEUE
typedef mutable_queue<vertex_descriptor, std::vector<vertex_descriptor>,
in_queue_compare_type, VertexIndexMap> in_queue_type;
#else
typedef relaxed_heap<vertex_descriptor, in_queue_compare_type,
VertexIndexMap> in_queue_type;
#endif // MUTABLE_QUEUE
typedef typename process_group_type::process_id_type process_id_type;
public:
typedef typename dist_queue_type::size_type size_type;
typedef typename dist_queue_type::value_type value_type;
crauser_et_al_dijkstra_queue(const Graph& g,
const Combine& combine,
const Compare& compare,
const VertexIndexMap& id,
const DistanceMap& distance_map,
const PredecessorMap& predecessor_map,
const MinOutWeightMap& min_out_weight,
const MinInWeightMap& min_in_weight)
: inherited(boost::graph::parallel::process_group(g), get(vertex_owner, g)),
dist_queue(num_vertices(g),
dist_queue_compare_type(distance_map, compare),
id),
out_queue(num_vertices(g),
out_queue_compare_type(distance_map, min_out_weight,
combine, compare),
id),
in_queue(num_vertices(g),
in_queue_compare_type(distance_map, min_in_weight,
combine, compare),
id),
g(g),
distance_map(distance_map),
predecessor_map(predecessor_map),
min_out_weight(min_out_weight),
min_in_weight(min_in_weight),
min_distance(0),
min_out_distance(0)
#ifdef PBGL_ACCOUNTING
, local_deletions(0)
#endif
{ }
void push(const value_type& x)
{
msg_value_type msg_value =
msg_value_creator::create(get(distance_map, x),
predecessor_value(get(predecessor_map, x)));
inherited::update(x, msg_value);
}
void update(const value_type& x) { push(x); }
void pop()
{
// Remove from distance queue
dist_queue.remove(top_vertex);
// Remove from OUT queue
out_queue.remove(top_vertex);
// Remove from IN queue
in_queue.remove(top_vertex);
#ifdef PBGL_ACCOUNTING
++local_deletions;
#endif
}
vertex_descriptor& top() { return top_vertex; }
const vertex_descriptor& top() const { return top_vertex; }
bool empty()
{
inherited::collect();
// If there are no suitable messages, wait until we get something
while (!has_suitable_vertex()) {
if (do_synchronize()) return true;
}
// Return true only if nobody has any messages; false if we
// have suitable messages
return false;
}
bool do_synchronize()
{
using boost::parallel::all_reduce;
using boost::parallel::minimum;
inherited::synchronize();
// TBD: could use combine here, but then we need to stop using
// minimum<distance_type>() as the function object.
distance_type local_distances[2];
local_distances[0] =
dist_queue.empty()? (std::numeric_limits<distance_type>::max)()
: get(distance_map, dist_queue.top());
local_distances[1] =
out_queue.empty()? (std::numeric_limits<distance_type>::max)()
: (get(distance_map, out_queue.top())
+ get(min_out_weight, out_queue.top()));
distance_type distances[2];
all_reduce(this->process_group, local_distances, local_distances + 2,
distances, minimum<distance_type>());
min_distance = distances[0];
min_out_distance = distances[1];
#ifdef PBGL_ACCOUNTING
std::size_t deletions = 0;
all_reduce(this->process_group, &local_deletions, &local_deletions + 1,
&deletions, std::plus<std::size_t>());
if (process_id(this->process_group) == 0) {
crauser_et_al_shortest_paths_stats.deleted_vertices.push_back(deletions);
}
local_deletions = 0;
BOOST_ASSERT(deletions > 0);
#endif
return min_distance == (std::numeric_limits<distance_type>::max)();
}
private:
vertex_descriptor predecessor_value(vertex_descriptor v) const
{ return v; }
vertex_descriptor
predecessor_value(property_traits<dummy_property_map>::reference) const
{ return graph_traits<Graph>::null_vertex(); }
bool has_suitable_vertex() const
{
if (!dist_queue.empty()) {
top_vertex = dist_queue.top();
if (get(distance_map, dist_queue.top()) <= min_out_distance)
return true;
}
if (!in_queue.empty()) {
top_vertex = in_queue.top();
return (get(distance_map, top_vertex)
- get(min_in_weight, top_vertex)) <= min_distance;
}
return false;
}
public:
void
receive_update(process_id_type source, vertex_descriptor vertex,
distance_type distance)
{
// Update the queue if the received distance is better than
// the distance we know locally
if (distance < get(distance_map, vertex)
|| (distance == get(distance_map, vertex)
&& source == process_id(this->process_group))) {
// Update the local distance map
put(distance_map, vertex, distance);
bool is_in_queue = dist_queue.contains(vertex);
if (!is_in_queue) {
dist_queue.push(vertex);
out_queue.push(vertex);
in_queue.push(vertex);
}
else {
dist_queue.update(vertex);
out_queue.update(vertex);
in_queue.update(vertex);
}
}
}
void
receive_update(process_id_type source, vertex_descriptor vertex,
std::pair<distance_type, vertex_descriptor> p)
{
if (p.first <= get(distance_map, vertex)) {
put(predecessor_map, vertex, p.second);
receive_update(source, vertex, p.first);
}
}
private:
dist_queue_type dist_queue;
out_queue_type out_queue;
in_queue_type in_queue;
mutable value_type top_vertex;
const Graph& g;
DistanceMap distance_map;
PredecessorMap predecessor_map;
MinOutWeightMap min_out_weight;
MinInWeightMap min_in_weight;
distance_type min_distance;
distance_type min_out_distance;
#ifdef PBGL_ACCOUNTING
std::size_t local_deletions;
#endif
};
/************************************************************************/
/************************************************************************
* Initialize the property map that contains the minimum incoming edge *
* weight for each vertex. There are separate implementations for *
* directed, bidirectional, and undirected graph. *
************************************************************************/
template<typename Graph, typename MinInWeightMap, typename WeightMap,
typename Inf, typename Compare>
void
initialize_min_in_weights(const Graph& g, MinInWeightMap min_in_weight,
WeightMap weight, Inf inf, Compare compare,
directed_tag, incidence_graph_tag)
{
// Send minimum weights off to the owners
set_property_map_role(vertex_distance, min_in_weight);
BGL_FORALL_VERTICES_T(v, g, Graph) {
BGL_FORALL_OUTEDGES_T(v, e, g, Graph) {
if (get(weight, e) < get(min_in_weight, target(e, g)))
put(min_in_weight, target(e, g), get(weight, e));
}
}
using boost::graph::parallel::process_group;
synchronize(process_group(g));
// Replace any infinities with zeros
BGL_FORALL_VERTICES_T(v, g, Graph) {
if (get(min_in_weight, v) == inf) put(min_in_weight, v, 0);
}
}
template<typename Graph, typename MinInWeightMap, typename WeightMap,
typename Inf, typename Compare>
void
initialize_min_in_weights(const Graph& g, MinInWeightMap min_in_weight,
WeightMap weight, Inf inf, Compare compare,
directed_tag, bidirectional_graph_tag)
{
#if 0
typename property_map<Graph, vertex_local_t>::const_type
local = get(vertex_local, g);
// This code assumes that the properties of the in-edges are
// available locally. This is not necessarily the case, so don't
// do this yet.
set_property_map_role(vertex_distance, min_in_weight);
BGL_FORALL_VERTICES_T(v, g, Graph) {
if (in_edges(v, g).first != in_edges(v, g).second) {
std::cerr << "weights(" << g.distribution().global(get(local, v))
<< ") = ";
BGL_FORALL_INEDGES_T(v, e, g, Graph) {
std::cerr << get(weight, e) << ' ';
}
std::cerr << std::endl;
put(min_in_weight, v,
*std::min_element
(make_property_map_iterator(weight, in_edges(v, g).first),
make_property_map_iterator(weight, in_edges(v, g).second),
compare));
} else {
put(min_in_weight, v, 0);
}
std::cerr << "miw(" << g.distribution().global(get(local, v)) << ") = "
<< get(min_in_weight, v) << std::endl;
}
#else
initialize_min_in_weights(g, min_in_weight, weight, inf, compare,
directed_tag(), incidence_graph_tag());
#endif
}
template<typename Graph, typename MinInWeightMap, typename WeightMap,
typename Inf, typename Compare>
inline void
initialize_min_in_weights(const Graph&, MinInWeightMap, WeightMap, Inf,
Compare, undirected_tag, bidirectional_graph_tag)
{
// In weights are the same as out weights, so do nothing
}
/************************************************************************/
/************************************************************************
* Initialize the property map that contains the minimum outgoing edge *
* weight for each vertex. *
************************************************************************/
template<typename Graph, typename MinOutWeightMap, typename WeightMap,
typename Compare>
void
initialize_min_out_weights(const Graph& g, MinOutWeightMap min_out_weight,
WeightMap weight, Compare compare)
{
typedef typename property_traits<WeightMap>::value_type weight_type;
BGL_FORALL_VERTICES_T(v, g, Graph) {
if (out_edges(v, g).first != out_edges(v, g).second) {
put(min_out_weight, v,
*std::min_element
(make_property_map_iterator(weight, out_edges(v, g).first),
make_property_map_iterator(weight, out_edges(v, g).second),
compare));
if (get(min_out_weight, v) < weight_type(0))
boost::throw_exception(negative_edge());
}
}
}
/************************************************************************/
} // end namespace detail
template<typename DistributedGraph, typename DijkstraVisitor,
typename PredecessorMap, typename DistanceMap, typename WeightMap,
typename IndexMap, typename ColorMap, typename Compare,
typename Combine, typename DistInf, typename DistZero>
void
crauser_et_al_shortest_paths
(const DistributedGraph& g,
typename graph_traits<DistributedGraph>::vertex_descriptor s,
PredecessorMap predecessor, DistanceMap distance, WeightMap weight,
IndexMap index_map, ColorMap color_map,
Compare compare, Combine combine, DistInf inf, DistZero zero,
DijkstraVisitor vis)
{
typedef typename boost::graph::parallel::process_group_type<DistributedGraph>::type
process_group_type;
typedef typename process_group_type::process_id_type process_id_type;
typedef typename graph_traits<DistributedGraph>::vertex_descriptor
Vertex;
typedef typename graph_traits<DistributedGraph>::vertices_size_type
vertices_size_type;
#ifdef PBGL_ACCOUNTING
crauser_et_al_shortest_paths_stats.deleted_vertices.clear();
crauser_et_al_shortest_paths_stats.execution_time = accounting::get_time();
#endif
// Property map that stores the lowest edge weight outgoing from
// each vertex. If a vertex has no out-edges, the stored weight
// is zero.
typedef typename property_traits<WeightMap>::value_type weight_type;
typedef iterator_property_map<weight_type*, IndexMap> MinOutWeightMap;
std::vector<weight_type> min_out_weights_vec(num_vertices(g), inf);
MinOutWeightMap min_out_weight(&min_out_weights_vec.front(), index_map);
detail::initialize_min_out_weights(g, min_out_weight, weight, compare);
// Property map that stores the lowest edge weight incoming to
// each vertex. For undirected graphs, this will just be a
// shallow copy of the version for outgoing edges.
typedef typename graph_traits<DistributedGraph>::directed_category
directed_category;
const bool is_undirected =
is_same<directed_category, undirected_tag>::value;
typedef MinOutWeightMap MinInWeightMap;
std::vector<weight_type>
min_in_weights_vec(is_undirected? 1 : num_vertices(g), inf);
MinInWeightMap min_in_weight(&min_in_weights_vec.front(), index_map);
typedef typename graph_traits<DistributedGraph>::traversal_category
category;
detail::initialize_min_in_weights(g, min_in_weight, weight, inf, compare,
directed_category(), category());
// Initialize local portion of property maps
typename graph_traits<DistributedGraph>::vertex_iterator ui, ui_end;
for (boost::tie(ui, ui_end) = vertices(g); ui != ui_end; ++ui) {
put(distance, *ui, inf);
put(predecessor, *ui, *ui);
}
put(distance, s, zero);
// Dijkstra Queue
typedef detail::crauser_et_al_dijkstra_queue
<DistributedGraph, Combine, Compare, IndexMap, DistanceMap,
PredecessorMap, MinOutWeightMap, MinInWeightMap>
Queue;
Queue Q(g, combine, compare, index_map, distance, predecessor,
min_out_weight, is_undirected? min_out_weight : min_in_weight);
// Parallel Dijkstra visitor
::boost::detail::dijkstra_bfs_visitor<
DijkstraVisitor, Queue, WeightMap,
boost::parallel::caching_property_map<PredecessorMap>,
boost::parallel::caching_property_map<DistanceMap>, Combine, Compare
> bfs_vis(vis, Q, weight,
boost::parallel::make_caching_property_map(predecessor),
boost::parallel::make_caching_property_map(distance),
combine, compare, zero);
set_property_map_role(vertex_color, color_map);
set_property_map_role(vertex_distance, distance);
breadth_first_search(g, s, Q, bfs_vis, color_map);
#ifdef PBGL_ACCOUNTING
crauser_et_al_shortest_paths_stats.execution_time =
accounting::get_time() - crauser_et_al_shortest_paths_stats.execution_time;
#endif
}
template<typename DistributedGraph, typename PredecessorMap,
typename DistanceMap, typename WeightMap>
void
crauser_et_al_shortest_paths
(const DistributedGraph& g,
typename graph_traits<DistributedGraph>::vertex_descriptor s,
PredecessorMap predecessor, DistanceMap distance, WeightMap weight)
{
typedef typename property_traits<DistanceMap>::value_type distance_type;
std::vector<default_color_type> colors(num_vertices(g), white_color);
crauser_et_al_shortest_paths(g, s, predecessor, distance, weight,
get(vertex_index, g),
make_iterator_property_map(&colors[0],
get(vertex_index, g)),
std::less<distance_type>(),
closed_plus<distance_type>(),
(std::numeric_limits<distance_type>::max)(),
distance_type(),
dijkstra_visitor<>());
}
template<typename DistributedGraph, typename PredecessorMap,
typename DistanceMap>
void
crauser_et_al_shortest_paths
(const DistributedGraph& g,
typename graph_traits<DistributedGraph>::vertex_descriptor s,
PredecessorMap predecessor, DistanceMap distance)
{
crauser_et_al_shortest_paths(g, s, predecessor, distance,
get(edge_weight, g));
}
} // end namespace distributed
#ifdef PBGL_ACCOUNTING
using distributed::crauser_et_al_shortest_paths_stats;
#endif
using distributed::crauser_et_al_shortest_paths;
} } // end namespace boost::graph
#endif // BOOST_GRAPH_CRAUSER_ET_AL_SHORTEST_PATHS_HPP