boost/graph/detail/set_adaptor.hpp
// (C) Copyright Jeremy Siek 2001.
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_SET_ADAPTOR_HPP
#define BOOST_SET_ADAPTOR_HPP
#include <set>
#include <boost/unordered_set.hpp>
namespace boost {
template <class K, class C, class A, class T>
bool set_contains(const std::set<K,C,A>& s, const T& x) {
return s.find(x) != s.end();
}
template <class K, class H, class C, class A, class T>
bool set_contains(const boost::unordered_set<K,H,C,A>& s, const T& x) {
return s.find(x) != s.end();
}
template <class K, class C, class A>
bool set_equal(const std::set<K,C,A>& x,
const std::set<K,C,A>& y)
{
return x == y;
}
// Not the same as lexicographical_compare_3way applied to std::set.
// this is equivalent semantically to bitset::operator<()
template <class K, class C, class A>
int set_lex_order(const std::set<K,C,A>& x,
const std::set<K,C,A>& y)
{
typename std::set<K,C,A>::iterator
xi = x.begin(), yi = y.begin(), xend = x.end(), yend = y.end();
for (; xi != xend && yi != yend; ++xi, ++yi) {
if (*xi < *yi)
return 1;
else if (*yi < *xi)
return -1;
}
if (xi == xend)
return (yi == yend) ? 0 : -1;
else
return 1;
}
template <class K, class C, class A>
void set_clear(std::set<K,C,A>& x) {
x.clear();
}
template <class K, class C, class A>
bool set_empty(const std::set<K,C,A>& x) {
return x.empty();
}
template <class K, class C, class A, class T>
void set_insert(std::set<K,C,A>& x, const T& a) {
x.insert(a);
}
template <class K, class C, class A, class T>
void set_remove(std::set<K,C,A>& x, const T& a) {
x.erase(a);
}
template <class K, class C, class A>
void set_intersect(const std::set<K,C,A>& x,
const std::set<K,C,A>& y,
std::set<K,C,A>& z)
{
z.clear();
std::set_intersection(x.begin(), x.end(),
y.begin(), y.end(),
std::inserter(z));
}
template <class K, class C, class A>
void set_union(const std::set<K,C,A>& x,
const std::set<K,C,A>& y,
std::set<K,C,A>& z)
{
z.clear();
std::set_union(x.begin(), x.end(),
y.begin(), y.end(),
std::inserter(z));
}
template <class K, class C, class A>
void set_difference(const std::set<K,C,A>& x,
const std::set<K,C,A>& y,
std::set<K,C,A>& z)
{
z.clear();
std::set_difference(x.begin(), x.end(),
y.begin(), y.end(),
std::inserter(z, z.begin()));
}
template <class K, class C, class A>
bool set_subset(const std::set<K,C,A>& x,
const std::set<K,C,A>& y)
{
return std::includes(x.begin(), x.end(), y.begin(), y.end());
}
// Shit, can't implement this without knowing the size of the
// universe.
template <class K, class C, class A>
void set_compliment(const std::set<K,C,A>& x,
std::set<K,C,A>& z)
{
z.clear();
}
} // namespace boost
#endif // BOOST_SET_ADAPTOR_HPP