boost/graph/detail/compressed_sparse_row_struct.hpp
// Copyright 2005-2009 The Trustees of Indiana University.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Jeremiah Willcock
// Douglas Gregor
// Andrew Lumsdaine
// Compressed sparse row graph type internal structure
#ifndef BOOST_GRAPH_COMPRESSED_SPARSE_ROW_STRUCT_HPP
#define BOOST_GRAPH_COMPRESSED_SPARSE_ROW_STRUCT_HPP
#ifndef BOOST_GRAPH_COMPRESSED_SPARSE_ROW_GRAPH_HPP
#error This file should only be included from boost/graph/compressed_sparse_row_graph.hpp
#endif
#include <vector>
#include <utility>
#include <algorithm>
#include <climits>
#include <boost/assert.hpp>
#include <iterator>
#if 0
#include <iostream> // For some debugging code below
#endif
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include <boost/graph/filtered_graph.hpp> // For keep_all
#include <boost/graph/detail/indexed_properties.hpp>
#include <boost/graph/detail/histogram_sort.hpp>
#include <boost/graph/iteration_macros.hpp>
#include <boost/iterator/counting_iterator.hpp>
#include <boost/iterator/reverse_iterator.hpp>
#include <boost/iterator/zip_iterator.hpp>
#include <boost/iterator/transform_iterator.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/property_map/property_map.hpp>
#include <boost/integer.hpp>
#include <boost/iterator/iterator_facade.hpp>
#include <boost/mpl/if.hpp>
#include <boost/graph/graph_selectors.hpp>
#include <boost/static_assert.hpp>
#include <boost/functional/hash.hpp>
namespace boost {
namespace detail {
// Forward declaration of CSR edge descriptor type, needed to pass to
// indexed_edge_properties.
template<typename Vertex, typename EdgeIndex>
class csr_edge_descriptor;
// Add edge_index property map
template<typename Vertex, typename EdgeIndex>
struct csr_edge_index_map
{
typedef EdgeIndex value_type;
typedef EdgeIndex reference;
typedef csr_edge_descriptor<Vertex, EdgeIndex> key_type;
typedef readable_property_map_tag category;
};
template<typename Vertex, typename EdgeIndex>
inline EdgeIndex
get(const csr_edge_index_map<Vertex, EdgeIndex>&,
const csr_edge_descriptor<Vertex, EdgeIndex>& key)
{
return key.idx;
}
/** Compressed sparse row graph internal structure.
*
* Vertex and EdgeIndex should be unsigned integral types and should
* specialize numeric_limits.
*/
template <typename EdgeProperty,
typename Vertex = std::size_t, typename EdgeIndex = Vertex>
class compressed_sparse_row_structure :
public detail::indexed_edge_properties<
compressed_sparse_row_structure<EdgeProperty, Vertex, EdgeIndex>,
EdgeProperty,
csr_edge_descriptor<Vertex, EdgeIndex>,
csr_edge_index_map<Vertex, EdgeIndex> > {
public:
typedef detail::indexed_edge_properties<
compressed_sparse_row_structure<EdgeProperty, Vertex, EdgeIndex>,
EdgeProperty,
csr_edge_descriptor<Vertex, EdgeIndex>,
csr_edge_index_map<Vertex, EdgeIndex> >
inherited_edge_properties;
typedef Vertex vertices_size_type;
typedef Vertex vertex_descriptor;
typedef EdgeIndex edges_size_type;
static vertex_descriptor null_vertex() { return vertex_descriptor(-1); }
std::vector<EdgeIndex> m_rowstart;
std::vector<Vertex> m_column;
compressed_sparse_row_structure(Vertex numverts = 0)
: m_rowstart(numverts + 1, EdgeIndex(0)), m_column()
{}
// Rebuild graph from number of vertices and multi-pass unsorted list of
// edges (filtered using source_pred and mapped using global_to_local)
template <typename MultiPassInputIterator, typename GlobalToLocal, typename SourcePred>
void
assign_unsorted_multi_pass_edges(MultiPassInputIterator edge_begin,
MultiPassInputIterator edge_end,
vertices_size_type numlocalverts,
const GlobalToLocal& global_to_local,
const SourcePred& source_pred) {
m_rowstart.clear();
m_rowstart.resize(numlocalverts + 1, 0);
typedef std::pair<vertices_size_type, vertices_size_type> edge_type;
typedef boost::transform_iterator<boost::graph::detail::project1st<edge_type>, MultiPassInputIterator> source_iterator;
typedef boost::transform_iterator<boost::graph::detail::project2nd<edge_type>, MultiPassInputIterator> target_iterator;
source_iterator sources_begin(edge_begin, boost::graph::detail::project1st<edge_type>());
source_iterator sources_end(edge_end, boost::graph::detail::project1st<edge_type>());
target_iterator targets_begin(edge_begin, boost::graph::detail::project2nd<edge_type>());
target_iterator targets_end(edge_end, boost::graph::detail::project2nd<edge_type>());
boost::graph::detail::count_starts
(sources_begin, sources_end, m_rowstart.begin(), numlocalverts,
source_pred, boost::make_property_map_function(global_to_local));
m_column.resize(m_rowstart.back());
inherited_edge_properties::resize(m_rowstart.back());
boost::graph::detail::histogram_sort
(sources_begin, sources_end, m_rowstart.begin(), numlocalverts,
targets_begin, m_column.begin(),
source_pred, boost::make_property_map_function(global_to_local));
}
// Rebuild graph from number of vertices and multi-pass unsorted list of
// edges and their properties (filtered using source_pred and mapped using
// global_to_local)
template <typename MultiPassInputIterator, typename EdgePropertyIterator, typename GlobalToLocal, typename SourcePred>
void
assign_unsorted_multi_pass_edges(MultiPassInputIterator edge_begin,
MultiPassInputIterator edge_end,
EdgePropertyIterator ep_iter,
vertices_size_type numlocalverts,
const GlobalToLocal& global_to_local,
const SourcePred& source_pred) {
m_rowstart.clear();
m_rowstart.resize(numlocalverts + 1, 0);
typedef std::pair<vertices_size_type, vertices_size_type> edge_type;
typedef boost::transform_iterator<boost::graph::detail::project1st<edge_type>, MultiPassInputIterator> source_iterator;
typedef boost::transform_iterator<boost::graph::detail::project2nd<edge_type>, MultiPassInputIterator> target_iterator;
source_iterator sources_begin(edge_begin, boost::graph::detail::project1st<edge_type>());
source_iterator sources_end(edge_end, boost::graph::detail::project1st<edge_type>());
target_iterator targets_begin(edge_begin, boost::graph::detail::project2nd<edge_type>());
target_iterator targets_end(edge_end, boost::graph::detail::project2nd<edge_type>());
boost::graph::detail::count_starts
(sources_begin, sources_end, m_rowstart.begin(), numlocalverts,
source_pred, boost::make_property_map_function(global_to_local));
m_column.resize(m_rowstart.back());
inherited_edge_properties::resize(m_rowstart.back());
boost::graph::detail::histogram_sort
(sources_begin, sources_end, m_rowstart.begin(), numlocalverts,
targets_begin, m_column.begin(),
ep_iter, inherited_edge_properties::begin(),
source_pred, boost::make_property_map_function(global_to_local));
}
// Assign from number of vertices and sorted list of edges
template<typename InputIterator, typename GlobalToLocal, typename SourcePred>
void assign_from_sorted_edges(
InputIterator edge_begin, InputIterator edge_end,
const GlobalToLocal& global_to_local,
const SourcePred& source_pred,
vertices_size_type numlocalverts,
edges_size_type numedges_or_zero) {
m_column.clear();
m_column.reserve(numedges_or_zero);
m_rowstart.resize(numlocalverts + 1);
EdgeIndex current_edge = 0;
Vertex current_vertex_plus_one = 1;
m_rowstart[0] = 0;
for (InputIterator ei = edge_begin; ei != edge_end; ++ei) {
if (!source_pred(ei->first)) continue;
Vertex src = get(global_to_local, ei->first);
Vertex tgt = ei->second;
for (; current_vertex_plus_one != src + 1; ++current_vertex_plus_one)
m_rowstart[current_vertex_plus_one] = current_edge;
m_column.push_back(tgt);
++current_edge;
}
// The remaining vertices have no edges
for (; current_vertex_plus_one != numlocalverts + 1; ++current_vertex_plus_one)
m_rowstart[current_vertex_plus_one] = current_edge;
// Default-construct properties for edges
inherited_edge_properties::resize(m_column.size());
}
// Assign from number of vertices and sorted list of edges
template<typename InputIterator, typename EdgePropertyIterator, typename GlobalToLocal, typename SourcePred>
void assign_from_sorted_edges(
InputIterator edge_begin, InputIterator edge_end,
EdgePropertyIterator ep_iter,
const GlobalToLocal& global_to_local,
const SourcePred& source_pred,
vertices_size_type numlocalverts,
edges_size_type numedges_or_zero) {
// Reserving storage in advance can save us lots of time and
// memory, but it can only be done if we have forward iterators or
// the user has supplied the number of edges.
edges_size_type numedges = numedges_or_zero;
if (numedges == 0) {
typedef typename std::iterator_traits<InputIterator>::iterator_category
category;
numedges = boost::graph::detail::reserve_count_for_single_pass(edge_begin, edge_end);
}
m_column.clear();
m_column.reserve(numedges_or_zero);
inherited_edge_properties::clear();
inherited_edge_properties::reserve(numedges_or_zero);
m_rowstart.resize(numlocalverts + 1);
EdgeIndex current_edge = 0;
Vertex current_vertex_plus_one = 1;
m_rowstart[0] = 0;
for (InputIterator ei = edge_begin; ei != edge_end; ++ei, ++ep_iter) {
if (!source_pred(ei->first)) continue;
Vertex src = get(global_to_local, ei->first);
Vertex tgt = ei->second;
for (; current_vertex_plus_one != src + 1; ++current_vertex_plus_one)
m_rowstart[current_vertex_plus_one] = current_edge;
m_column.push_back(tgt);
inherited_edge_properties::push_back(*ep_iter);
++current_edge;
}
// The remaining vertices have no edges
for (; current_vertex_plus_one != numlocalverts + 1; ++current_vertex_plus_one)
m_rowstart[current_vertex_plus_one] = current_edge;
}
// Replace graph with sources and targets given, sorting them in-place, and
// using the given global-to-local property map to get local indices from
// global ones in the two arrays.
template <typename GlobalToLocal>
void assign_sources_and_targets_global(std::vector<vertex_descriptor>& sources,
std::vector<vertex_descriptor>& targets,
vertices_size_type numverts,
GlobalToLocal global_to_local) {
BOOST_ASSERT (sources.size() == targets.size());
// Do an in-place histogram sort (at least that's what I think it is) to
// sort sources and targets
m_rowstart.clear();
m_rowstart.resize(numverts + 1);
boost::graph::detail::count_starts
(sources.begin(), sources.end(), m_rowstart.begin(), numverts,
keep_all(), boost::make_property_map_function(global_to_local));
boost::graph::detail::histogram_sort_inplace
(sources.begin(), m_rowstart.begin(), numverts,
targets.begin(), boost::make_property_map_function(global_to_local));
// Now targets is the correct vector (properly sorted by source) for
// m_column
m_column.swap(targets);
inherited_edge_properties::resize(m_rowstart.back());
}
// Replace graph with sources and targets and edge properties given, sorting
// them in-place, and using the given global-to-local property map to get
// local indices from global ones in the two arrays.
template <typename GlobalToLocal>
void assign_sources_and_targets_global(std::vector<vertex_descriptor>& sources,
std::vector<vertex_descriptor>& targets,
std::vector<typename inherited_edge_properties::edge_bundled>& edge_props,
vertices_size_type numverts,
GlobalToLocal global_to_local) {
BOOST_ASSERT (sources.size() == targets.size());
BOOST_ASSERT (sources.size() == edge_props.size());
// Do an in-place histogram sort (at least that's what I think it is) to
// sort sources and targets
m_rowstart.clear();
m_rowstart.resize(numverts + 1);
boost::graph::detail::count_starts
(sources.begin(), sources.end(), m_rowstart.begin(), numverts,
keep_all(), boost::make_property_map_function(global_to_local));
boost::graph::detail::histogram_sort_inplace
(sources.begin(), m_rowstart.begin(), numverts,
targets.begin(), edge_props.begin(),
boost::make_property_map_function(global_to_local));
// Now targets is the correct vector (properly sorted by source) for
// m_column, and edge_props for m_edge_properties
m_column.swap(targets);
this->m_edge_properties.swap(edge_props);
}
// From any graph (slow and uses a lot of memory)
// Requires IncidenceGraph and a vertex index map
// Internal helper function
// Note that numedges must be doubled for undirected source graphs
template<typename Graph, typename VertexIndexMap>
void
assign(const Graph& g, const VertexIndexMap& vi,
vertices_size_type numverts, edges_size_type numedges)
{
m_rowstart.resize(numverts + 1);
m_column.resize(numedges);
inherited_edge_properties::resize(numedges);
EdgeIndex current_edge = 0;
typedef typename boost::graph_traits<Graph>::vertex_descriptor g_vertex;
typedef typename boost::graph_traits<Graph>::edge_descriptor g_edge;
typedef typename boost::graph_traits<Graph>::out_edge_iterator
g_out_edge_iter;
std::vector<g_vertex> ordered_verts_of_g(numverts);
BGL_FORALL_VERTICES_T(v, g, Graph) {
ordered_verts_of_g[get(vertex_index, g, v)] = v;
}
for (Vertex i = 0; i != numverts; ++i) {
m_rowstart[i] = current_edge;
g_vertex v = ordered_verts_of_g[i];
g_out_edge_iter ei, ei_end;
for (boost::tie(ei, ei_end) = out_edges(v, g); ei != ei_end; ++ei) {
m_column[current_edge++] = get(vi, target(*ei, g));
}
}
m_rowstart[numverts] = current_edge;
}
// Add edges from a sorted (smallest sources first) range of pairs and edge
// properties
template <typename BidirectionalIteratorOrig, typename EPIterOrig,
typename GlobalToLocal>
void
add_edges_sorted_internal(
BidirectionalIteratorOrig first_sorted,
BidirectionalIteratorOrig last_sorted,
EPIterOrig ep_iter_sorted,
const GlobalToLocal& global_to_local) {
typedef boost::reverse_iterator<BidirectionalIteratorOrig> BidirectionalIterator;
typedef boost::reverse_iterator<EPIterOrig> EPIter;
// Flip sequence
BidirectionalIterator first(last_sorted);
BidirectionalIterator last(first_sorted);
typedef Vertex vertex_t;
typedef Vertex vertex_num;
typedef EdgeIndex edge_num;
edge_num new_edge_count = std::distance(first, last);
EPIter ep_iter(ep_iter_sorted);
std::advance(ep_iter, -(std::ptrdiff_t)new_edge_count);
edge_num edges_added_before_i = new_edge_count; // Count increment to add to rowstarts
m_column.resize(m_column.size() + new_edge_count);
inherited_edge_properties::resize(inherited_edge_properties::size() + new_edge_count);
BidirectionalIterator current_new_edge = first, prev_new_edge = first;
EPIter current_new_edge_prop = ep_iter;
for (vertex_num i_plus_1 = m_rowstart.size() - 1; i_plus_1 > 0; --i_plus_1) {
vertex_num i = i_plus_1 - 1;
prev_new_edge = current_new_edge;
// edges_added_to_this_vertex = #mbrs of new_edges with first == i
edge_num edges_added_to_this_vertex = 0;
while (current_new_edge != last) {
if (get(global_to_local, current_new_edge->first) != i) break;
++current_new_edge;
++current_new_edge_prop;
++edges_added_to_this_vertex;
}
edges_added_before_i -= edges_added_to_this_vertex;
// Invariant: edges_added_before_i = #mbrs of new_edges with first < i
edge_num old_rowstart = m_rowstart[i];
edge_num new_rowstart = m_rowstart[i] + edges_added_before_i;
edge_num old_degree = m_rowstart[i + 1] - m_rowstart[i];
edge_num new_degree = old_degree + edges_added_to_this_vertex;
// Move old edges forward (by #new_edges before this i) to make room
// new_rowstart > old_rowstart, so use copy_backwards
if (old_rowstart != new_rowstart) {
std::copy_backward(m_column.begin() + old_rowstart,
m_column.begin() + old_rowstart + old_degree,
m_column.begin() + new_rowstart + old_degree);
inherited_edge_properties::move_range(old_rowstart, old_rowstart + old_degree, new_rowstart);
}
// Add new edges (reversed because current_new_edge is a
// const_reverse_iterator)
BidirectionalIterator temp = current_new_edge;
EPIter temp_prop = current_new_edge_prop;
for (; temp != prev_new_edge; ++old_degree) {
--temp;
--temp_prop;
m_column[new_rowstart + old_degree] = temp->second;
inherited_edge_properties::write_by_index(new_rowstart + old_degree, *temp_prop);
}
m_rowstart[i + 1] = new_rowstart + new_degree;
if (edges_added_before_i == 0) break; // No more edges inserted before this point
// m_rowstart[i] will be fixed up on the next iteration (to avoid
// changing the degree of vertex i - 1); the last iteration never changes
// it (either because of the condition of the break or because
// m_rowstart[0] is always 0)
}
}
};
template<typename Vertex, typename EdgeIndex>
class csr_edge_descriptor
{
public:
Vertex src;
EdgeIndex idx;
csr_edge_descriptor(Vertex src, EdgeIndex idx): src(src), idx(idx) {}
csr_edge_descriptor(): src(0), idx(0) {}
bool operator==(const csr_edge_descriptor& e) const {return idx == e.idx;}
bool operator!=(const csr_edge_descriptor& e) const {return idx != e.idx;}
bool operator<(const csr_edge_descriptor& e) const {return idx < e.idx;}
bool operator>(const csr_edge_descriptor& e) const {return idx > e.idx;}
bool operator<=(const csr_edge_descriptor& e) const {return idx <= e.idx;}
bool operator>=(const csr_edge_descriptor& e) const {return idx >= e.idx;}
template<typename Archiver>
void serialize(Archiver& ar, const unsigned int /*version*/)
{
ar & src & idx;
}
};
// Common out edge and edge iterators
template<typename CSRGraph>
class csr_out_edge_iterator
: public iterator_facade<csr_out_edge_iterator<CSRGraph>,
typename CSRGraph::edge_descriptor,
std::random_access_iterator_tag,
const typename CSRGraph::edge_descriptor&,
typename int_t<CHAR_BIT * sizeof(typename CSRGraph::edges_size_type)>::fast>
{
public:
typedef typename CSRGraph::edges_size_type EdgeIndex;
typedef typename CSRGraph::edge_descriptor edge_descriptor;
typedef typename int_t<CHAR_BIT * sizeof(EdgeIndex)>::fast difference_type;
csr_out_edge_iterator() {}
// Implicit copy constructor OK
explicit csr_out_edge_iterator(edge_descriptor edge) : m_edge(edge) { }
public: // GCC 4.2.1 doesn't like the private-and-friend thing
// iterator_facade requirements
const edge_descriptor& dereference() const { return m_edge; }
bool equal(const csr_out_edge_iterator& other) const
{ return m_edge == other.m_edge; }
void increment() { ++m_edge.idx; }
void decrement() { --m_edge.idx; }
void advance(difference_type n) { m_edge.idx += n; }
difference_type distance_to(const csr_out_edge_iterator& other) const
{ return other.m_edge.idx - m_edge.idx; }
edge_descriptor m_edge;
friend class iterator_core_access;
};
template<typename CSRGraph>
class csr_edge_iterator
: public iterator_facade<csr_edge_iterator<CSRGraph>,
typename CSRGraph::edge_descriptor,
boost::forward_traversal_tag,
typename CSRGraph::edge_descriptor>
{
private:
typedef typename CSRGraph::edge_descriptor edge_descriptor;
typedef typename CSRGraph::edges_size_type EdgeIndex;
public:
csr_edge_iterator() : rowstart_array(0), current_edge(), end_of_this_vertex(0), total_num_edges(0) {}
csr_edge_iterator(const CSRGraph& graph,
edge_descriptor current_edge,
EdgeIndex end_of_this_vertex)
: rowstart_array(&graph.m_forward.m_rowstart[0]),
current_edge(current_edge),
end_of_this_vertex(end_of_this_vertex),
total_num_edges(num_edges(graph)) {}
public: // See above
friend class boost::iterator_core_access;
edge_descriptor dereference() const {return current_edge;}
bool equal(const csr_edge_iterator& o) const {
return current_edge == o.current_edge;
}
void increment() {
++current_edge.idx;
if (current_edge.idx == total_num_edges) return;
while (current_edge.idx == end_of_this_vertex) {
++current_edge.src;
end_of_this_vertex = rowstart_array[current_edge.src + 1];
}
}
const EdgeIndex* rowstart_array;
edge_descriptor current_edge;
EdgeIndex end_of_this_vertex;
EdgeIndex total_num_edges;
};
// Only for bidirectional graphs
template<typename CSRGraph>
class csr_in_edge_iterator
: public iterator_facade<csr_in_edge_iterator<CSRGraph>,
typename CSRGraph::edge_descriptor,
boost::forward_traversal_tag,
typename CSRGraph::edge_descriptor>
{
public:
typedef typename CSRGraph::edges_size_type EdgeIndex;
typedef typename CSRGraph::edge_descriptor edge_descriptor;
csr_in_edge_iterator(): m_graph(0) {}
// Implicit copy constructor OK
csr_in_edge_iterator(const CSRGraph& graph,
EdgeIndex index_in_backward_graph)
: m_index_in_backward_graph(index_in_backward_graph), m_graph(&graph) {}
public: // See above
// iterator_facade requirements
edge_descriptor dereference() const {
return edge_descriptor(
m_graph->m_backward.m_column[m_index_in_backward_graph],
m_graph->m_backward.m_edge_properties[m_index_in_backward_graph]);
}
bool equal(const csr_in_edge_iterator& other) const
{ return m_index_in_backward_graph == other.m_index_in_backward_graph; }
void increment() { ++m_index_in_backward_graph; }
void decrement() { --m_index_in_backward_graph; }
void advance(std::ptrdiff_t n) { m_index_in_backward_graph += n; }
std::ptrdiff_t distance_to(const csr_in_edge_iterator& other) const
{ return other.m_index_in_backward_graph - m_index_in_backward_graph; }
EdgeIndex m_index_in_backward_graph;
const CSRGraph* m_graph;
friend class iterator_core_access;
};
template <typename A, typename B>
struct transpose_pair {
typedef std::pair<B, A> result_type;
result_type operator()(const std::pair<A, B>& p) const {
return result_type(p.second, p.first);
}
};
template <typename Iter>
struct transpose_iterator_gen {
typedef typename std::iterator_traits<Iter>::value_type vt;
typedef typename vt::first_type first_type;
typedef typename vt::second_type second_type;
typedef transpose_pair<first_type, second_type> transpose;
typedef boost::transform_iterator<transpose, Iter> type;
static type make(Iter it) {
return type(it, transpose());
}
};
template <typename Iter>
typename transpose_iterator_gen<Iter>::type transpose_edges(Iter i) {
return transpose_iterator_gen<Iter>::make(i);
}
template<typename GraphT, typename VertexIndexMap>
class edge_to_index_pair
{
typedef typename boost::graph_traits<GraphT>::vertices_size_type
vertices_size_type;
typedef typename boost::graph_traits<GraphT>::edge_descriptor edge_descriptor;
public:
typedef std::pair<vertices_size_type, vertices_size_type> result_type;
edge_to_index_pair() : g(0), index() { }
edge_to_index_pair(const GraphT& g, const VertexIndexMap& index)
: g(&g), index(index)
{ }
result_type operator()(edge_descriptor e) const
{
return result_type(get(index, source(e, *g)), get(index, target(e, *g)));
}
private:
const GraphT* g;
VertexIndexMap index;
};
template<typename GraphT, typename VertexIndexMap>
edge_to_index_pair<GraphT, VertexIndexMap>
make_edge_to_index_pair(const GraphT& g, const VertexIndexMap& index)
{
return edge_to_index_pair<GraphT, VertexIndexMap>(g, index);
}
template<typename GraphT>
edge_to_index_pair
<GraphT,
typename boost::property_map<GraphT,boost::vertex_index_t>::const_type>
make_edge_to_index_pair(const GraphT& g)
{
typedef typename boost::property_map<GraphT,
boost::vertex_index_t>::const_type
VertexIndexMap;
return edge_to_index_pair<GraphT, VertexIndexMap>(g,
get(boost::vertex_index,
g));
}
template<typename GraphT, typename VertexIndexMap, typename Iter>
boost::transform_iterator<edge_to_index_pair<GraphT, VertexIndexMap>, Iter>
make_edge_to_index_pair_iter(const GraphT& g, const VertexIndexMap& index,
Iter it) {
return boost::transform_iterator<edge_to_index_pair<GraphT, VertexIndexMap>, Iter>(it, edge_to_index_pair<GraphT, VertexIndexMap>(g, index));
}
} // namespace detail
template<typename Vertex, typename EdgeIndex>
struct hash<detail::csr_edge_descriptor<Vertex, EdgeIndex> >
{
std::size_t operator()
(detail::csr_edge_descriptor<Vertex, EdgeIndex> const& x) const
{
std::size_t hash = hash_value(x.src);
hash_combine(hash, x.idx);
return hash;
}
};
} // namespace boost
#endif // BOOST_GRAPH_COMPRESSED_SPARSE_ROW_STRUCT_HPP