boost/random/lognormal_distribution.hpp
/* boost random/lognormal_distribution.hpp header file
*
* Copyright Jens Maurer 2000-2001
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id: lognormal_distribution.hpp 60755 2010-03-22 00:45:06Z steven_watanabe $
*
* Revision history
* 2001-02-18 moved to individual header files
*/
#ifndef BOOST_RANDOM_LOGNORMAL_DISTRIBUTION_HPP
#define BOOST_RANDOM_LOGNORMAL_DISTRIBUTION_HPP
#include <boost/config/no_tr1/cmath.hpp> // std::exp, std::sqrt
#include <cassert>
#include <iostream>
#include <boost/limits.hpp>
#include <boost/static_assert.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/normal_distribution.hpp>
#ifdef BOOST_NO_STDC_NAMESPACE
namespace std {
using ::log;
using ::sqrt;
}
#endif
namespace boost {
#if defined(__GNUC__) && (__GNUC__ < 3)
// Special gcc workaround: gcc 2.95.x ignores using-declarations
// in template classes (confirmed by gcc author Martin v. Loewis)
using std::sqrt;
using std::exp;
#endif
/**
* Instantiations of class template lognormal_distribution model a
* \random_distribution. Such a distribution produces random numbers
* with \f$p(x) = \frac{1}{x \sigma_N \sqrt{2\pi}} e^{\frac{-\left(\log(x)-\mu_N\right)^2}{2\sigma_N^2}}\f$
* for x > 0, where \f$\mu_N = \log\left(\frac{\mu^2}{\sqrt{\sigma^2 + \mu^2}}\right)\f$ and
* \f$\sigma_N = \sqrt{\log\left(1 + \frac{\sigma^2}{\mu^2}\right)}\f$.
*/
template<class RealType = double>
class lognormal_distribution
{
public:
typedef typename normal_distribution<RealType>::input_type input_type;
typedef RealType result_type;
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
BOOST_STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer);
#endif
/**
* Constructs a lognormal_distribution. @c mean and @c sigma are the
* mean and standard deviation of the lognormal distribution.
*/
explicit lognormal_distribution(result_type mean_arg = result_type(1),
result_type sigma_arg = result_type(1))
: _mean(mean_arg), _sigma(sigma_arg)
{
assert(_mean > result_type(0));
init();
}
// compiler-generated copy ctor and assignment operator are fine
RealType mean() const { return _mean; }
RealType sigma() const { return _sigma; }
void reset() { _normal.reset(); }
template<class Engine>
result_type operator()(Engine& eng)
{
#ifndef BOOST_NO_STDC_NAMESPACE
// allow for Koenig lookup
using std::exp;
#endif
return exp(_normal(eng) * _nsigma + _nmean);
}
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
template<class CharT, class Traits>
friend std::basic_ostream<CharT,Traits>&
operator<<(std::basic_ostream<CharT,Traits>& os, const lognormal_distribution& ld)
{
os << ld._normal << " " << ld._mean << " " << ld._sigma;
return os;
}
template<class CharT, class Traits>
friend std::basic_istream<CharT,Traits>&
operator>>(std::basic_istream<CharT,Traits>& is, lognormal_distribution& ld)
{
is >> std::ws >> ld._normal >> std::ws >> ld._mean >> std::ws >> ld._sigma;
ld.init();
return is;
}
#endif
private:
/// \cond hide_private_members
void init()
{
#ifndef BOOST_NO_STDC_NAMESPACE
// allow for Koenig lookup
using std::exp; using std::log; using std::sqrt;
#endif
_nmean = log(_mean*_mean/sqrt(_sigma*_sigma + _mean*_mean));
_nsigma = sqrt(log(_sigma*_sigma/_mean/_mean+result_type(1)));
}
/// \endcond
RealType _mean, _sigma;
RealType _nmean, _nsigma;
normal_distribution<result_type> _normal;
};
} // namespace boost
#endif // BOOST_RANDOM_LOGNORMAL_DISTRIBUTION_HPP