boost/random/inversive_congruential.hpp
/* boost random/inversive_congruential.hpp header file
*
* Copyright Jens Maurer 2000-2001
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org for most recent version including documentation.
*
* $Id: inversive_congruential.hpp 60755 2010-03-22 00:45:06Z steven_watanabe $
*
* Revision history
* 2001-02-18 moved to individual header files
*/
#ifndef BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP
#define BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP
#include <iostream>
#include <cassert>
#include <stdexcept>
#include <boost/config.hpp>
#include <boost/static_assert.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/const_mod.hpp>
namespace boost {
namespace random {
// Eichenauer and Lehn 1986
/**
* Instantiations of class template @c inversive_congruential model a
* \pseudo_random_number_generator. It uses the inversive congruential
* algorithm (ICG) described in
*
* @blockquote
* "Inversive pseudorandom number generators: concepts, results and links",
* Peter Hellekalek, In: "Proceedings of the 1995 Winter Simulation
* Conference", C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Goldsman
* (editors), 1995, pp. 255-262. ftp://random.mat.sbg.ac.at/pub/data/wsc95.ps
* @endblockquote
*
* The output sequence is defined by x(n+1) = (a*inv(x(n)) - b) (mod p),
* where x(0), a, b, and the prime number p are parameters of the generator.
* The expression inv(k) denotes the multiplicative inverse of k in the
* field of integer numbers modulo p, with inv(0) := 0.
*
* The template parameter IntType shall denote a signed integral type large
* enough to hold p; a, b, and p are the parameters of the generators. The
* template parameter val is the validation value checked by validation.
*
* @xmlnote
* The implementation currently uses the Euclidian Algorithm to compute
* the multiplicative inverse. Therefore, the inversive generators are about
* 10-20 times slower than the others (see section"performance"). However,
* the paper talks of only 3x slowdown, so the Euclidian Algorithm is probably
* not optimal for calculating the multiplicative inverse.
* @endxmlnote
*/
template<class IntType, IntType a, IntType b, IntType p, IntType val>
class inversive_congruential
{
public:
typedef IntType result_type;
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
static const bool has_fixed_range = true;
static const result_type min_value = (b == 0 ? 1 : 0);
static const result_type max_value = p-1;
#else
BOOST_STATIC_CONSTANT(bool, has_fixed_range = false);
#endif
BOOST_STATIC_CONSTANT(result_type, multiplier = a);
BOOST_STATIC_CONSTANT(result_type, increment = b);
BOOST_STATIC_CONSTANT(result_type, modulus = p);
result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return b == 0 ? 1 : 0; }
result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return p-1; }
/**
* Constructs an inversive_congruential generator with
* @c y0 as the initial state.
*/
explicit inversive_congruential(IntType y0 = 1) : value(y0)
{
BOOST_STATIC_ASSERT(b >= 0);
BOOST_STATIC_ASSERT(p > 1);
BOOST_STATIC_ASSERT(a >= 1);
if(b == 0)
assert(y0 > 0);
}
template<class It> inversive_congruential(It& first, It last)
{ seed(first, last); }
/** Changes the current state to y0. */
void seed(IntType y0 = 1) { value = y0; if(b == 0) assert(y0 > 0); }
template<class It> void seed(It& first, It last)
{
if(first == last)
throw std::invalid_argument("inversive_congruential::seed");
value = *first++;
}
IntType operator()()
{
typedef const_mod<IntType, p> do_mod;
value = do_mod::mult_add(a, do_mod::invert(value), b);
return value;
}
static bool validation(result_type x) { return val == x; }
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
template<class CharT, class Traits>
friend std::basic_ostream<CharT,Traits>&
operator<<(std::basic_ostream<CharT,Traits>& os, inversive_congruential x)
{ os << x.value; return os; }
template<class CharT, class Traits>
friend std::basic_istream<CharT,Traits>&
operator>>(std::basic_istream<CharT,Traits>& is, inversive_congruential& x)
{ is >> x.value; return is; }
#endif
friend bool operator==(inversive_congruential x, inversive_congruential y)
{ return x.value == y.value; }
friend bool operator!=(inversive_congruential x, inversive_congruential y)
{ return !(x == y); }
#else
// Use a member function; Streamable concept not supported.
bool operator==(inversive_congruential rhs) const
{ return value == rhs.value; }
bool operator!=(inversive_congruential rhs) const
{ return !(*this == rhs); }
#endif
private:
IntType value;
};
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
// A definition is required even for integral static constants
template<class IntType, IntType a, IntType b, IntType p, IntType val>
const bool inversive_congruential<IntType, a, b, p, val>::has_fixed_range;
template<class IntType, IntType a, IntType b, IntType p, IntType val>
const typename inversive_congruential<IntType, a, b, p, val>::result_type inversive_congruential<IntType, a, b, p, val>::min_value;
template<class IntType, IntType a, IntType b, IntType p, IntType val>
const typename inversive_congruential<IntType, a, b, p, val>::result_type inversive_congruential<IntType, a, b, p, val>::max_value;
template<class IntType, IntType a, IntType b, IntType p, IntType val>
const typename inversive_congruential<IntType, a, b, p, val>::result_type inversive_congruential<IntType, a, b, p, val>::multiplier;
template<class IntType, IntType a, IntType b, IntType p, IntType val>
const typename inversive_congruential<IntType, a, b, p, val>::result_type inversive_congruential<IntType, a, b, p, val>::increment;
template<class IntType, IntType a, IntType b, IntType p, IntType val>
const typename inversive_congruential<IntType, a, b, p, val>::result_type inversive_congruential<IntType, a, b, p, val>::modulus;
#endif
} // namespace random
/**
* The specialization hellekalek1995 was suggested in
*
* @blockquote
* "Inversive pseudorandom number generators: concepts, results and links",
* Peter Hellekalek, In: "Proceedings of the 1995 Winter Simulation
* Conference", C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Goldsman
* (editors), 1995, pp. 255-262. ftp://random.mat.sbg.ac.at/pub/data/wsc95.ps
* @endblockquote
*/
typedef random::inversive_congruential<int32_t, 9102, 2147483647-36884165,
2147483647, 0> hellekalek1995;
} // namespace boost
#endif // BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP