boost/spirit/home/classic/phoenix/actor.hpp
/*=============================================================================
Phoenix v1.2
Copyright (c) 2001-2002 Joel de Guzman
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
==============================================================================*/
#ifndef PHOENIX_ACTOR_HPP
#define PHOENIX_ACTOR_HPP
///////////////////////////////////////////////////////////////////////////////
#include <boost/spirit/home/classic/phoenix/tuples.hpp>
///////////////////////////////////////////////////////////////////////////////
namespace phoenix {
// These are forward declared here because we cannot include impl.hpp
// or operators.hpp yet but the actor's assignment operator and index
// operator are required to be members.
//////////////////////////////////
struct assign_op;
struct index_op;
//////////////////////////////////
namespace impl {
template <typename OperationT, typename BaseT, typename B>
struct make_binary1;
}
///////////////////////////////////////////////////////////////////////////////
//
// unpack_tuple class
//
// This class is used to unpack a supplied tuple such, that the members of
// this tuple will be handled as if they would be supplied separately.
//
///////////////////////////////////////////////////////////////////////////////
template <typename TupleT>
struct unpack_tuple : public TupleT {
typedef TupleT tuple_t;
unpack_tuple() {}
unpack_tuple(tuple_t const &tuple_) : TupleT(tuple_) {}
};
///////////////////////////////////////////////////////////////////////////////
//
// actor class
//
// This class is a protocol class for all actors. This class is
// essentially an interface contract. The actor class does not
// really know how how to act on anything but instead relies on the
// template parameter BaseT (from which the actor will derive from)
// to do the actual action.
//
// An actor is a functor that is capable of accepting arguments up
// to a predefined maximum. It is up to the base class to do the
// actual processing or possibly to limit the arity (no. of
// arguments) passed in. Upon invocation of the functor through a
// supplied operator(), the actor funnels the arguments passed in
// by the client into a tuple and calls the base eval member
// function.
//
// Schematically:
//
// arg0 ---------|
// arg1 ---------|
// arg2 ---------|---> tupled_args ---> base.eval
// ... |
// argN ---------|
//
// actor::operator()(arg0, arg1... argN)
// ---> BaseT::eval(tupled_args);
//
// Actor base classes from which this class inherits from are
// expected to have a corresponding member function eval compatible
// with the conceptual Interface:
//
// template <typename TupleT>
// actor_return_type
// eval(TupleT const& args) const;
//
// where args are the actual arguments passed in by the client
// funneled into a tuple (see tuple.hpp for details).
//
// The actor_return_type can be anything. Base classes are free to
// return any type, even argument dependent types (types that are
// deduced from the types of the arguments). After evaluating the
// parameters and doing some computations or actions, the eval
// member function concludes by returning something back to the
// client. To do this, the forwarding function (the actor's
// operator()) needs to know the return type of the eval member
// function that it is calling. For this purpose, actor base
// classes are required to provide a nested template class:
//
// template <typename TupleT>
// struct result;
//
// This auxiliary class provides the result type information
// returned by the eval member function of a base actor class. The
// nested template class result should have a typedef 'type' that
// reflects the return type of its member function eval. It is
// basically a type computer that answers the question "given
// arguments packed into a TupleT type, what will be the result
// type of the eval member function of ActorT?". The template class
// actor_result queries this to extract the return type of an
// actor. Example:
//
// typedef typename actor_result<ActorT, TupleT>::type
// actor_return_type;
//
// where actor_return_type is the actual type returned by ActorT's
// eval member function given some arguments in a TupleT.
//
///////////////////////////////////////////////////////////////////////////////
template <typename ActorT, typename TupleT>
struct actor_result {
typedef typename ActorT::template result<TupleT>::type type;
typedef typename remove_reference<type>::type plain_type;
};
//////////////////////////////////
template <typename BaseT>
struct actor : public BaseT {
actor();
actor(BaseT const& base);
typename actor_result<BaseT, tuple<> >::type
operator()() const;
template <typename A>
typename actor_result<BaseT, tuple<A&> >::type
operator()(A& a) const;
template <typename A, typename B>
typename actor_result<BaseT, tuple<A&, B&> >::type
operator()(A& a, B& b) const;
template <typename A, typename B, typename C>
typename actor_result<BaseT, tuple<A&, B&, C&> >::type
operator()(A& a, B& b, C& c) const;
#if PHOENIX_LIMIT > 3
template <typename A, typename B, typename C, typename D>
typename actor_result<BaseT, tuple<A&, B&, C&, D&> >::type
operator()(A& a, B& b, C& c, D& d) const;
template <typename A, typename B, typename C, typename D, typename E>
typename actor_result<BaseT, tuple<A&, B&, C&, D&, E&> >::type
operator()(A& a, B& b, C& c, D& d, E& e) const;
template <
typename A, typename B, typename C, typename D, typename E,
typename F>
typename actor_result<BaseT, tuple<A&, B&, C&, D&, E&, F&> >::type
operator()(A& a, B& b, C& c, D& d, E& e, F& f) const;
#if PHOENIX_LIMIT > 6
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G>
typename actor_result<BaseT, tuple<A&, B&, C&, D&, E&, F&, G&> >::type
operator()(A& a, B& b, C& c, D& d, E& e, F& f, G& g) const;
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H>
typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&>
>::type
operator()(A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h) const;
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H, typename I>
typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&>
>::type
operator()(A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h, I& i) const;
#if PHOENIX_LIMIT > 9
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H, typename I, typename J>
typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&>
>::type
operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h, I& i, J& j) const;
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H, typename I, typename J,
typename K>
typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&>
>::type
operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h, I& i, J& j,
K& k) const;
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H, typename I, typename J,
typename K, typename L>
typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&, L&>
>::type
operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h, I& i, J& j,
K& k, L& l) const;
#if PHOENIX_LIMIT > 12
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H, typename I, typename J,
typename K, typename L, typename M>
typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&, L&, M&>
>::type
operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h, I& i, J& j,
K& k, L& l, M& m) const;
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H, typename I, typename J,
typename K, typename L, typename M, typename N>
typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&, L&, M&, N&>
>::type
operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h, I& i, J& j,
K& k, L& l, M& m, N& n) const;
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H, typename I, typename J,
typename K, typename L, typename M, typename N, typename O>
typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&, L&, M&, N&, O&>
>::type
operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h, I& i, J& j,
K& k, L& l, M& m, N& n, O& o) const;
#endif
#endif
#endif
#endif
template <typename TupleT>
typename actor_result<BaseT, unpack_tuple<TupleT> >::type
operator()(unpack_tuple<TupleT> const &t) const;
template <typename B>
typename impl::make_binary1<assign_op, BaseT, B>::type
operator=(B const& b) const;
template <typename B>
typename impl::make_binary1<index_op, BaseT, B>::type
operator[](B const& b) const;
};
///////////////////////////////////////////////////////////////////////////
//
// as_actor
//
// as_actor is a meta-program that converts an arbitrary type into
// an actor. All participants in the framework must be first-class
// actors. This meta-program is used all throughout the framework
// whenever an unknown type needs to be converted to an actor.
// as_actor specializations are expected to have a typedef 'type'.
// This is the destination actor type. A static member function
// 'convert' converts an object to this target type.
//
// The meta-program does no conversion if the object to be
// converted is already an actor.
//
///////////////////////////////////////////////////////////////////////////
template <typename T>
struct as_actor;
//////////////////////////////////
template <typename BaseT>
struct as_actor<actor<BaseT> > {
typedef actor<BaseT> type;
static type convert(actor<BaseT> const& x) { return x; }
};
//////////////////////////////////
template <>
struct as_actor<nil_t> {
typedef nil_t type;
static nil_t convert(nil_t /*x*/)
{ return nil_t(); }
};
//////////////////////////////////
template <>
struct as_actor<void> {
typedef void type;
// ERROR!!!
};
///////////////////////////////////////////////////////////////////////////////
//
// actor class implementation
//
///////////////////////////////////////////////////////////////////////////////
template <typename BaseT>
actor<BaseT>::actor()
: BaseT() {}
//////////////////////////////////
template <typename BaseT>
actor<BaseT>::actor(BaseT const& base)
: BaseT(base) {}
//////////////////////////////////
template <typename BaseT>
inline typename actor_result<BaseT, tuple<> >::type
actor<BaseT>::operator()() const
{
return BaseT::eval(tuple<>());
}
//////////////////////////////////
template <typename BaseT>
template <typename A>
inline typename actor_result<BaseT, tuple<A&> >::type
actor<BaseT>::operator()(A& a) const
{
return BaseT::eval(tuple<A&>(a));
}
//////////////////////////////////
template <typename BaseT>
template <typename A, typename B>
inline typename actor_result<BaseT, tuple<A&, B&> >::type
actor<BaseT>::operator()(A& a, B& b) const
{
return BaseT::eval(tuple<A&, B&>(a, b));
}
//////////////////////////////////
template <typename BaseT>
template <typename A, typename B, typename C>
inline typename actor_result<BaseT, tuple<A&, B&, C&> >::type
actor<BaseT>::operator()(A& a, B& b, C& c) const
{
return BaseT::eval(tuple<A&, B&, C&>(a, b, c));
}
#if PHOENIX_LIMIT > 3
//////////////////////////////////
template <typename BaseT>
template <typename A, typename B, typename C, typename D>
inline typename actor_result<BaseT, tuple<A&, B&, C&, D&> >::type
actor<BaseT>::operator()(A& a, B& b, C& c, D& d) const
{
return BaseT::eval(tuple<A&, B&, C&, D&>(a, b, c, d));
}
//////////////////////////////////
template <typename BaseT>
template <typename A, typename B, typename C, typename D, typename E>
inline typename actor_result<BaseT, tuple<A&, B&, C&, D&, E&> >::type
actor<BaseT>::operator()(A& a, B& b, C& c, D& d, E& e) const
{
return BaseT::eval(tuple<A&, B&, C&, D&, E&>(a, b, c, d, e));
}
//////////////////////////////////
template <typename BaseT>
template <
typename A, typename B, typename C, typename D, typename E,
typename F>
inline typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&>
>::type
actor<BaseT>::operator()(
A& a, B& b, C& c, D& d, E& e, F& f
) const
{
return BaseT::eval(
tuple<A&, B&, C&, D&, E&, F&>
(a, b, c, d, e, f)
);
}
#if PHOENIX_LIMIT > 6
//////////////////////////////////
template <typename BaseT>
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G>
inline typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&>
>::type
actor<BaseT>::operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g
) const
{
return BaseT::eval(
tuple<A&, B&, C&, D&, E&, F&, G&>
(a, b, c, d, e, f, g)
);
}
//////////////////////////////////
template <typename BaseT>
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H>
inline typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&>
>::type
actor<BaseT>::operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h
) const
{
return BaseT::eval(
tuple<A&, B&, C&, D&, E&, F&, G&, H&>
(a, b, c, d, e, f, g, h)
);
}
//////////////////////////////////
template <typename BaseT>
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H, typename I>
inline typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&>
>::type
actor<BaseT>::operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h, I& i
) const
{
return BaseT::eval(
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&>
(a, b, c, d, e, f, g, h, i)
);
}
#if PHOENIX_LIMIT > 9
//////////////////////////////////
template <typename BaseT>
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H, typename I, typename J>
inline typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&>
>::type
actor<BaseT>::operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h, I& i, J& j
) const
{
return BaseT::eval(
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&>
(a, b, c, d, e, f, g, h, i, j)
);
}
//////////////////////////////////
template <typename BaseT>
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H, typename I, typename J,
typename K>
inline typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&>
>::type
actor<BaseT>::operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h, I& i, J& j,
K& k
) const
{
return BaseT::eval(
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&>
(a, b, c, d, e, f, g, h, i, j, k)
);
}
//////////////////////////////////
template <typename BaseT>
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H, typename I, typename J,
typename K, typename L>
inline typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&, L&>
>::type
actor<BaseT>::operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h, I& i, J& j,
K& k, L& l
) const
{
return BaseT::eval(
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&, L&>
(a, b, c, d, e, f, g, h, i, j, k, l)
);
}
#if PHOENIX_LIMIT > 12
//////////////////////////////////
template <typename BaseT>
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H, typename I, typename J,
typename K, typename L, typename M>
inline typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&, L&, M&>
>::type
actor<BaseT>::operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h, I& i, J& j,
K& k, L& l, M& m
) const
{
return BaseT::eval(
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&, L&, M&>
(a, b, c, d, e, f, g, h, i, j, k, l, m)
);
}
//////////////////////////////////
template <typename BaseT>
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H, typename I, typename J,
typename K, typename L, typename M, typename N>
inline typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&, L&, M&, N&>
>::type
actor<BaseT>::operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h, I& i, J& j,
K& k, L& l, M& m, N& n
) const
{
return BaseT::eval(
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&, L&, M&, N&>
(a, b, c, d, e, f, g, h, i, j, k, l, m, n)
);
}
//////////////////////////////////
template <typename BaseT>
template <
typename A, typename B, typename C, typename D, typename E,
typename F, typename G, typename H, typename I, typename J,
typename K, typename L, typename M, typename N, typename O>
inline typename actor_result<BaseT,
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&, L&, M&, N&, O&>
>::type
actor<BaseT>::operator()(
A& a, B& b, C& c, D& d, E& e, F& f, G& g, H& h, I& i, J& j,
K& k, L& l, M& m, N& n, O& o
) const
{
return BaseT::eval(
tuple<A&, B&, C&, D&, E&, F&, G&, H&, I&, J&, K&, L&, M&, N&, O&>
(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)
);
}
#endif
#endif
#endif
#endif
//////////////////////////////////
template <typename BaseT>
template <typename TupleT>
typename actor_result<BaseT, unpack_tuple<TupleT> >::type
actor<BaseT>::operator()(unpack_tuple<TupleT> const &t) const
{
return BaseT::eval(t);
}
///////////////////////////////////////////////////////////////////////////////
} // namespace phoenix
#endif