boost/numeric/ublas/vector_expression.hpp
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef _BOOST_UBLAS_VECTOR_EXPRESSION_
#define _BOOST_UBLAS_VECTOR_EXPRESSION_
#include <boost/numeric/ublas/expression_types.hpp>
// Expression templates based on ideas of Todd Veldhuizen and Geoffrey Furnish
// Iterators based on ideas of Jeremy Siek
//
// Classes that model the Vector Expression concept
namespace boost { namespace numeric { namespace ublas {
template<class E>
class vector_reference:
public vector_expression<vector_reference<E> > {
typedef vector_reference<E> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using vector_expression<vector_reference<E> >::operator ();
#endif
typedef typename E::size_type size_type;
typedef typename E::difference_type difference_type;
typedef typename E::value_type value_type;
typedef typename E::const_reference const_reference;
typedef typename boost::mpl::if_<boost::is_const<E>,
typename E::const_reference,
typename E::reference>::type reference;
typedef E referred_type;
typedef const self_type const_closure_type;
typedef self_type closure_type;
typedef typename E::storage_category storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
explicit vector_reference (referred_type &e):
e_ (e) {}
// Accessors
BOOST_UBLAS_INLINE
size_type size () const {
return expression ().size ();
}
public:
// Expression accessors - const correct
BOOST_UBLAS_INLINE
const referred_type &expression () const {
return e_;
}
BOOST_UBLAS_INLINE
referred_type &expression () {
return e_;
}
public:
// Element access
#ifndef BOOST_UBLAS_REFERENCE_CONST_MEMBER
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
return expression () (i);
}
BOOST_UBLAS_INLINE
reference operator () (size_type i) {
return expression () (i);
}
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
return expression () [i];
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) {
return expression () [i];
}
#else
BOOST_UBLAS_INLINE
reference operator () (size_type i) const {
return expression () (i);
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) const {
return expression () [i];
}
#endif
// Assignment
BOOST_UBLAS_INLINE
vector_reference &operator = (const vector_reference &v) {
expression ().operator = (v);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_reference &operator = (const vector_expression<AE> &ae) {
expression ().operator = (ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_reference &assign (const vector_expression<AE> &ae) {
expression ().assign (ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_reference &operator += (const vector_expression<AE> &ae) {
expression ().operator += (ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_reference &plus_assign (const vector_expression<AE> &ae) {
expression ().plus_assign (ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_reference &operator -= (const vector_expression<AE> &ae) {
expression ().operator -= (ae);
return *this;
}
template<class AE>
BOOST_UBLAS_INLINE
vector_reference &minus_assign (const vector_expression<AE> &ae) {
expression ().minus_assign (ae);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
vector_reference &operator *= (const AT &at) {
expression ().operator *= (at);
return *this;
}
template<class AT>
BOOST_UBLAS_INLINE
vector_reference &operator /= (const AT &at) {
expression ().operator /= (at);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (vector_reference &v) {
expression ().swap (v.expression ());
}
// Closure comparison
BOOST_UBLAS_INLINE
bool same_closure (const vector_reference &vr) const {
return &(*this).e_ == &vr.e_;
}
// Iterator types
typedef typename E::const_iterator const_iterator;
typedef typename boost::mpl::if_<boost::is_const<E>,
typename E::const_iterator,
typename E::iterator>::type iterator;
// Element lookup
BOOST_UBLAS_INLINE
const_iterator find (size_type i) const {
return expression ().find (i);
}
BOOST_UBLAS_INLINE
iterator find (size_type i) {
return expression ().find (i);
}
// Iterator is the iterator of the referenced expression.
BOOST_UBLAS_INLINE
const_iterator begin () const {
return expression ().begin ();
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return expression ().end ();
}
BOOST_UBLAS_INLINE
iterator begin () {
return expression ().begin ();
}
BOOST_UBLAS_INLINE
iterator end () {
return expression ().end ();
}
// Reverse iterator
typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
typedef reverse_iterator_base<iterator> reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
reverse_iterator rbegin () {
return reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
reverse_iterator rend () {
return reverse_iterator (begin ());
}
private:
referred_type &e_;
};
template<class E, class F>
class vector_unary:
public vector_expression<vector_unary<E, F> > {
typedef F functor_type;
typedef typename boost::mpl::if_<boost::is_same<F, scalar_identity<typename E::value_type> >,
E,
const E>::type expression_type;
typedef typename boost::mpl::if_<boost::is_const<expression_type>,
typename E::const_closure_type,
typename E::closure_type>::type expression_closure_type;
typedef vector_unary<E, F> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using vector_expression<vector_unary<E, F> >::operator ();
#endif
typedef typename E::size_type size_type;
typedef typename E::difference_type difference_type;
typedef typename F::result_type value_type;
typedef value_type const_reference;
typedef typename boost::mpl::if_<boost::is_same<F, scalar_identity<value_type> >,
typename E::reference,
value_type>::type reference;
typedef const self_type const_closure_type;
typedef self_type closure_type;
typedef unknown_storage_tag storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
// May be used as mutable expression.
explicit vector_unary (expression_type &e):
e_ (e) {}
// Accessors
BOOST_UBLAS_INLINE
size_type size () const {
return e_.size ();
}
public:
// Expression accessors
BOOST_UBLAS_INLINE
const expression_closure_type &expression () const {
return e_;
}
public:
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
return functor_type::apply (e_ (i));
}
BOOST_UBLAS_INLINE
reference operator () (size_type i) {
BOOST_STATIC_ASSERT ((boost::is_same<functor_type, scalar_identity<value_type > >::value));
return e_ (i);
}
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
return functor_type::apply (e_ [i]);
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) {
BOOST_STATIC_ASSERT ((boost::is_same<functor_type, scalar_identity<value_type > >::value));
return e_ [i];
}
// Closure comparison
BOOST_UBLAS_INLINE
bool same_closure (const vector_unary &vu) const {
return (*this).expression ().same_closure (vu.expression ());
}
// Iterator types
private:
typedef typename E::const_iterator const_subiterator_type;
typedef const value_type *const_pointer;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_const_iterator<const_closure_type, typename const_subiterator_type::iterator_category> const_iterator;
typedef const_iterator iterator;
#else
class const_iterator;
typedef const_iterator iterator;
#endif
// Element lookup
BOOST_UBLAS_INLINE
const_iterator find (size_type i) const {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
const_subiterator_type it (e_.find (i));
return const_iterator (*this, it.index ());
#else
return const_iterator (*this, e_.find (i));
#endif
}
// Iterator enhances the iterator of the referenced expression
// with the unary functor.
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator:
public container_const_reference<vector_unary>,
public iterator_base_traits<typename E::const_iterator::iterator_category>::template
iterator_base<const_iterator, value_type>::type {
public:
typedef typename E::const_iterator::iterator_category iterator_category;
typedef typename vector_unary::difference_type difference_type;
typedef typename vector_unary::value_type value_type;
typedef typename vector_unary::const_reference reference;
typedef typename vector_unary::const_pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator ():
container_const_reference<self_type> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator (const self_type &vu, const const_subiterator_type &it):
container_const_reference<self_type> (vu), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -- () {
-- it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator += (difference_type n) {
it_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -= (difference_type n) {
it_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ - it.it_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
return functor_type::apply (*it_);
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
return it_.index ();
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
container_const_reference<self_type>::assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return it_ < it.it_;
}
private:
const_subiterator_type it_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator begin () const {
return find (0);
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return find (size ());
}
// Reverse iterator
typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
private:
expression_closure_type e_;
};
template<class E, class F>
struct vector_unary_traits {
typedef vector_unary<E, F> expression_type;
//FIXME
// #ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
typedef expression_type result_type;
// #else
// typedef typename E::vector_temporary_type result_type;
// #endif
};
// (- v) [i] = - v [i]
template<class E>
BOOST_UBLAS_INLINE
typename vector_unary_traits<E, scalar_negate<typename E::value_type> >::result_type
operator - (const vector_expression<E> &e) {
typedef typename vector_unary_traits<E, scalar_negate<typename E::value_type> >::expression_type expression_type;
return expression_type (e ());
}
// (conj v) [i] = conj (v [i])
template<class E>
BOOST_UBLAS_INLINE
typename vector_unary_traits<E, scalar_conj<typename E::value_type> >::result_type
conj (const vector_expression<E> &e) {
typedef typename vector_unary_traits<E, scalar_conj<typename E::value_type> >::expression_type expression_type;
return expression_type (e ());
}
// (real v) [i] = real (v [i])
template<class E>
BOOST_UBLAS_INLINE
typename vector_unary_traits<E, scalar_real<typename E::value_type> >::result_type
real (const vector_expression<E> &e) {
typedef typename vector_unary_traits<E, scalar_real<typename E::value_type> >::expression_type expression_type;
return expression_type (e ());
}
// (imag v) [i] = imag (v [i])
template<class E>
BOOST_UBLAS_INLINE
typename vector_unary_traits<E, scalar_imag<typename E::value_type> >::result_type
imag (const vector_expression<E> &e) {
typedef typename vector_unary_traits<E, scalar_imag<typename E::value_type> >::expression_type expression_type;
return expression_type (e ());
}
// (trans v) [i] = v [i]
template<class E>
BOOST_UBLAS_INLINE
typename vector_unary_traits<const E, scalar_identity<typename E::value_type> >::result_type
trans (const vector_expression<E> &e) {
typedef typename vector_unary_traits<const E, scalar_identity<typename E::value_type> >::expression_type expression_type;
return expression_type (e ());
}
template<class E>
BOOST_UBLAS_INLINE
typename vector_unary_traits<E, scalar_identity<typename E::value_type> >::result_type
trans (vector_expression<E> &e) {
typedef typename vector_unary_traits<E, scalar_identity<typename E::value_type> >::expression_type expression_type;
return expression_type (e ());
}
// (herm v) [i] = conj (v [i])
template<class E>
BOOST_UBLAS_INLINE
typename vector_unary_traits<E, scalar_conj<typename E::value_type> >::result_type
herm (const vector_expression<E> &e) {
typedef typename vector_unary_traits<E, scalar_conj<typename E::value_type> >::expression_type expression_type;
return expression_type (e ());
}
template<class E1, class E2, class F>
class vector_binary:
public vector_expression<vector_binary<E1, E2, F> > {
typedef E1 expression1_type;
typedef E2 expression2_type;
typedef F functor_type;
typedef typename E1::const_closure_type expression1_closure_type;
typedef typename E2::const_closure_type expression2_closure_type;
typedef vector_binary<E1, E2, F> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using vector_expression<vector_binary<E1, E2, F> >::operator ();
#endif
typedef typename promote_traits<typename E1::size_type, typename E2::size_type>::promote_type size_type;
typedef typename promote_traits<typename E1::difference_type, typename E2::difference_type>::promote_type difference_type;
typedef typename F::result_type value_type;
typedef value_type const_reference;
typedef const_reference reference;
typedef const self_type const_closure_type;
typedef const_closure_type closure_type;
typedef unknown_storage_tag storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
vector_binary (const expression1_type &e1, const expression2_type &e2):
e1_ (e1), e2_ (e2) {}
// Accessors
BOOST_UBLAS_INLINE
size_type size () const {
return BOOST_UBLAS_SAME (e1_.size (), e2_.size ());
}
private:
// Accessors
BOOST_UBLAS_INLINE
const expression1_closure_type &expression1 () const {
return e1_;
}
BOOST_UBLAS_INLINE
const expression2_closure_type &expression2 () const {
return e2_;
}
public:
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
return functor_type::apply (e1_ (i), e2_ (i));
}
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
return functor_type::apply (e1_ [i], e2_ [i]);
}
// Closure comparison
BOOST_UBLAS_INLINE
bool same_closure (const vector_binary &vb) const {
return (*this).expression1 ().same_closure (vb.expression1 ()) &&
(*this).expression2 ().same_closure (vb.expression2 ());
}
// Iterator types
private:
typedef typename E1::const_iterator const_subiterator1_type;
typedef typename E2::const_iterator const_subiterator2_type;
typedef const value_type *const_pointer;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef typename iterator_restrict_traits<typename const_subiterator1_type::iterator_category,
typename const_subiterator2_type::iterator_category>::iterator_category iterator_category;
typedef indexed_const_iterator<const_closure_type, iterator_category> const_iterator;
typedef const_iterator iterator;
#else
class const_iterator;
typedef const_iterator iterator;
#endif
// Element lookup
BOOST_UBLAS_INLINE
const_iterator find (size_type i) const {
const_subiterator1_type it1 (e1_.find (i));
const_subiterator1_type it1_end (e1_.find (size ()));
const_subiterator2_type it2 (e2_.find (i));
const_subiterator2_type it2_end (e2_.find (size ()));
i = (std::min) (it1 != it1_end ? it1.index () : size (),
it2 != it2_end ? it2.index () : size ());
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
return const_iterator (*this, i);
#else
return const_iterator (*this, i, it1, it1_end, it2, it2_end);
#endif
}
// Iterator merges the iterators of the referenced expressions and
// enhances them with the binary functor.
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator:
public container_const_reference<vector_binary>,
public iterator_base_traits<typename iterator_restrict_traits<typename E1::const_iterator::iterator_category,
typename E2::const_iterator::iterator_category>::iterator_category>::template
iterator_base<const_iterator, value_type>::type {
public:
typedef typename iterator_restrict_traits<typename E1::const_iterator::iterator_category,
typename E2::const_iterator::iterator_category>::iterator_category iterator_category;
typedef typename vector_binary::difference_type difference_type;
typedef typename vector_binary::value_type value_type;
typedef typename vector_binary::const_reference reference;
typedef typename vector_binary::const_pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator ():
container_const_reference<self_type> (), i_ (), it1_ (), it1_end_ (), it2_ (), it2_end_ () {}
BOOST_UBLAS_INLINE
const_iterator (const self_type &vb, size_type i,
const const_subiterator1_type &it1, const const_subiterator1_type &it1_end,
const const_subiterator2_type &it2, const const_subiterator2_type &it2_end):
container_const_reference<self_type> (vb), i_ (i), it1_ (it1), it1_end_ (it1_end), it2_ (it2), it2_end_ (it2_end) {}
private:
// Dense specializations
BOOST_UBLAS_INLINE
void increment (dense_random_access_iterator_tag) {
++ i_; ++ it1_; ++ it2_;
}
BOOST_UBLAS_INLINE
void decrement (dense_random_access_iterator_tag) {
-- i_; -- it1_; -- it2_;
}
BOOST_UBLAS_INLINE
void increment (dense_random_access_iterator_tag, difference_type n) {
i_ += n; it1_ += n; it2_ += n;
}
BOOST_UBLAS_INLINE
void decrement (dense_random_access_iterator_tag, difference_type n) {
i_ -= n; it1_ -= n; it2_ -= n;
}
BOOST_UBLAS_INLINE
value_type dereference (dense_random_access_iterator_tag) const {
return functor_type::apply (*it1_, *it2_);
}
// Packed specializations
BOOST_UBLAS_INLINE
void increment (packed_random_access_iterator_tag) {
if (it1_ != it1_end_)
if (it1_.index () <= i_)
++ it1_;
if (it2_ != it2_end_)
if (it2_.index () <= i_)
++ it2_;
++ i_;
}
BOOST_UBLAS_INLINE
void decrement (packed_random_access_iterator_tag) {
if (it1_ != it1_end_)
if (i_ <= it1_.index ())
-- it1_;
if (it2_ != it2_end_)
if (i_ <= it2_.index ())
-- it2_;
-- i_;
}
BOOST_UBLAS_INLINE
void increment (packed_random_access_iterator_tag, difference_type n) {
while (n > 0) {
increment (packed_random_access_iterator_tag ());
--n;
}
while (n < 0) {
decrement (packed_random_access_iterator_tag ());
++n;
}
}
BOOST_UBLAS_INLINE
void decrement (packed_random_access_iterator_tag, difference_type n) {
while (n > 0) {
decrement (packed_random_access_iterator_tag ());
--n;
}
while (n < 0) {
increment (packed_random_access_iterator_tag ());
++n;
}
}
BOOST_UBLAS_INLINE
value_type dereference (packed_random_access_iterator_tag) const {
value_type t1 = value_type/*zero*/();
if (it1_ != it1_end_)
if (it1_.index () == i_)
t1 = *it1_;
value_type t2 = value_type/*zero*/();
if (it2_ != it2_end_)
if (it2_.index () == i_)
t2 = *it2_;
return functor_type::apply (t1, t2);
}
// Sparse specializations
BOOST_UBLAS_INLINE
void increment (sparse_bidirectional_iterator_tag) {
size_type index1 = (*this) ().size ();
if (it1_ != it1_end_) {
if (it1_.index () <= i_)
++ it1_;
if (it1_ != it1_end_)
index1 = it1_.index ();
}
size_type index2 = (*this) ().size ();
if (it2_ != it2_end_) {
if (it2_.index () <= i_)
++ it2_;
if (it2_ != it2_end_)
index2 = it2_.index ();
}
i_ = (std::min) (index1, index2);
}
BOOST_UBLAS_INLINE
void decrement (sparse_bidirectional_iterator_tag) {
size_type index1 = (*this) ().size ();
if (it1_ != it1_end_) {
if (i_ <= it1_.index ())
-- it1_;
if (it1_ != it1_end_)
index1 = it1_.index ();
}
size_type index2 = (*this) ().size ();
if (it2_ != it2_end_) {
if (i_ <= it2_.index ())
-- it2_;
if (it2_ != it2_end_)
index2 = it2_.index ();
}
i_ = (std::max) (index1, index2);
}
BOOST_UBLAS_INLINE
void increment (sparse_bidirectional_iterator_tag, difference_type n) {
while (n > 0) {
increment (sparse_bidirectional_iterator_tag ());
--n;
}
while (n < 0) {
decrement (sparse_bidirectional_iterator_tag ());
++n;
}
}
BOOST_UBLAS_INLINE
void decrement (sparse_bidirectional_iterator_tag, difference_type n) {
while (n > 0) {
decrement (sparse_bidirectional_iterator_tag ());
--n;
}
while (n < 0) {
increment (sparse_bidirectional_iterator_tag ());
++n;
}
}
BOOST_UBLAS_INLINE
value_type dereference (sparse_bidirectional_iterator_tag) const {
value_type t1 = value_type/*zero*/();
if (it1_ != it1_end_)
if (it1_.index () == i_)
t1 = *it1_;
value_type t2 = value_type/*zero*/();
if (it2_ != it2_end_)
if (it2_.index () == i_)
t2 = *it2_;
return functor_type::apply (t1, t2);
}
public:
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator &operator ++ () {
increment (iterator_category ());
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -- () {
decrement (iterator_category ());
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator += (difference_type n) {
increment (iterator_category (), n);
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -= (difference_type n) {
decrement (iterator_category (), n);
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return index () - it.index ();
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
return dereference (iterator_category ());
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
return i_;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
container_const_reference<self_type>::assign (&it ());
i_ = it.i_;
it1_ = it.it1_;
it1_end_ = it.it1_end_;
it2_ = it.it2_;
it2_end_ = it.it2_end_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return index () == it.index ();
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
return index () < it.index ();
}
private:
size_type i_;
const_subiterator1_type it1_;
const_subiterator1_type it1_end_;
const_subiterator2_type it2_;
const_subiterator2_type it2_end_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator begin () const {
return find (0);
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return find (size ());
}
// Reverse iterator
typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
private:
expression1_closure_type e1_;
expression2_closure_type e2_;
};
template<class E1, class E2, class F>
struct vector_binary_traits {
typedef vector_binary<E1, E2, F> expression_type;
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
typedef expression_type result_type;
#else
typedef typename E1::vector_temporary_type result_type;
#endif
};
// (v1 + v2) [i] = v1 [i] + v2 [i]
template<class E1, class E2>
BOOST_UBLAS_INLINE
typename vector_binary_traits<E1, E2, scalar_plus<typename E1::value_type,
typename E2::value_type> >::result_type
operator + (const vector_expression<E1> &e1,
const vector_expression<E2> &e2) {
typedef typename vector_binary_traits<E1, E2, scalar_plus<typename E1::value_type,
typename E2::value_type> >::expression_type expression_type;
return expression_type (e1 (), e2 ());
}
// (v1 - v2) [i] = v1 [i] - v2 [i]
template<class E1, class E2>
BOOST_UBLAS_INLINE
typename vector_binary_traits<E1, E2, scalar_minus<typename E1::value_type,
typename E2::value_type> >::result_type
operator - (const vector_expression<E1> &e1,
const vector_expression<E2> &e2) {
typedef typename vector_binary_traits<E1, E2, scalar_minus<typename E1::value_type,
typename E2::value_type> >::expression_type expression_type;
return expression_type (e1 (), e2 ());
}
// (v1 * v2) [i] = v1 [i] * v2 [i]
template<class E1, class E2>
BOOST_UBLAS_INLINE
typename vector_binary_traits<E1, E2, scalar_multiplies<typename E1::value_type,
typename E2::value_type> >::result_type
element_prod (const vector_expression<E1> &e1,
const vector_expression<E2> &e2) {
typedef typename vector_binary_traits<E1, E2, scalar_multiplies<typename E1::value_type,
typename E2::value_type> >::expression_type expression_type;
return expression_type (e1 (), e2 ());
}
// (v1 / v2) [i] = v1 [i] / v2 [i]
template<class E1, class E2>
BOOST_UBLAS_INLINE
typename vector_binary_traits<E1, E2, scalar_divides<typename E1::value_type,
typename E2::value_type> >::result_type
element_div (const vector_expression<E1> &e1,
const vector_expression<E2> &e2) {
typedef typename vector_binary_traits<E1, E2, scalar_divides<typename E1::value_type,
typename E2::value_type> >::expression_type expression_type;
return expression_type (e1 (), e2 ());
}
template<class E1, class E2, class F>
class vector_binary_scalar1:
public vector_expression<vector_binary_scalar1<E1, E2, F> > {
typedef F functor_type;
typedef E1 expression1_type;
typedef E2 expression2_type;
public:
typedef const E1& expression1_closure_type;
typedef typename E2::const_closure_type expression2_closure_type;
private:
typedef vector_binary_scalar1<E1, E2, F> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using vector_expression<vector_binary_scalar1<E1, E2, F> >::operator ();
#endif
typedef typename E2::size_type size_type;
typedef typename E2::difference_type difference_type;
typedef typename F::result_type value_type;
typedef value_type const_reference;
typedef const_reference reference;
typedef const self_type const_closure_type;
typedef const_closure_type closure_type;
typedef unknown_storage_tag storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
vector_binary_scalar1 (const expression1_type &e1, const expression2_type &e2):
e1_ (e1), e2_ (e2) {}
// Accessors
BOOST_UBLAS_INLINE
size_type size () const {
return e2_.size ();
}
public:
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
return functor_type::apply (e1_, e2_ (i));
}
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
return functor_type::apply (e1_, e2_ [i]);
}
// Closure comparison
BOOST_UBLAS_INLINE
bool same_closure (const vector_binary_scalar1 &vbs1) const {
return &e1_ == &(vbs1.e1_) &&
(*this).e2_.same_closure (vbs1.e2_);
}
// Iterator types
private:
typedef expression1_type const_subiterator1_type;
typedef typename expression2_type::const_iterator const_subiterator2_type;
typedef const value_type *const_pointer;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_const_iterator<const_closure_type, typename const_subiterator2_type::iterator_category> const_iterator;
typedef const_iterator iterator;
#else
class const_iterator;
typedef const_iterator iterator;
#endif
// Element lookup
BOOST_UBLAS_INLINE
const_iterator find (size_type i) const {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
const_subiterator2_type it (e2_.find (i));
return const_iterator (*this, it.index ());
#else
return const_iterator (*this, const_subiterator1_type (e1_), e2_.find (i));
#endif
}
// Iterator enhances the iterator of the referenced vector expression
// with the binary functor.
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator:
public container_const_reference<vector_binary_scalar1>,
public iterator_base_traits<typename E2::const_iterator::iterator_category>::template
iterator_base<const_iterator, value_type>::type {
public:
typedef typename E2::const_iterator::iterator_category iterator_category;
typedef typename vector_binary_scalar1::difference_type difference_type;
typedef typename vector_binary_scalar1::value_type value_type;
typedef typename vector_binary_scalar1::const_reference reference;
typedef typename vector_binary_scalar1::const_pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator ():
container_const_reference<self_type> (), it1_ (), it2_ () {}
BOOST_UBLAS_INLINE
const_iterator (const self_type &vbs, const const_subiterator1_type &it1, const const_subiterator2_type &it2):
container_const_reference<self_type> (vbs), it1_ (it1), it2_ (it2) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator &operator ++ () {
++ it2_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -- () {
-- it2_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator += (difference_type n) {
it2_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -= (difference_type n) {
it2_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
// FIXME we shouldn't compare floats
// BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ - it.it2_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
return functor_type::apply (it1_, *it2_);
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
return it2_.index ();
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
container_const_reference<self_type>::assign (&it ());
it1_ = it.it1_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
// FIXME we shouldn't compare floats
// BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ == it.it2_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
// FIXME we shouldn't compare floats
// BOOST_UBLAS_CHECK (it1_ == it.it1_, external_logic ());
return it2_ < it.it2_;
}
private:
const_subiterator1_type it1_;
const_subiterator2_type it2_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator begin () const {
return find (0);
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return find (size ());
}
// Reverse iterator
typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
private:
expression1_closure_type e1_;
expression2_closure_type e2_;
};
template<class E1, class E2, class F>
struct vector_binary_scalar1_traits {
typedef vector_binary_scalar1<E1, E2, F> expression_type; // allow E1 to be builtin type
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
typedef expression_type result_type;
#else
typedef typename E2::vector_temporary_type result_type;
#endif
};
// (t * v) [i] = t * v [i]
template<class T1, class E2>
BOOST_UBLAS_INLINE
typename vector_binary_scalar1_traits<const T1, E2, scalar_multiplies<T1, typename E2::value_type> >::result_type
operator * (const T1 &e1,
const vector_expression<E2> &e2) {
typedef typename vector_binary_scalar1_traits<const T1, E2, scalar_multiplies<T1, typename E2::value_type> >::expression_type expression_type;
return expression_type (e1, e2 ());
}
template<class E1, class E2, class F>
class vector_binary_scalar2:
public vector_expression<vector_binary_scalar2<E1, E2, F> > {
typedef F functor_type;
typedef E1 expression1_type;
typedef E2 expression2_type;
typedef typename E1::const_closure_type expression1_closure_type;
typedef const E2& expression2_closure_type;
typedef vector_binary_scalar2<E1, E2, F> self_type;
public:
#ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS
using vector_expression<vector_binary_scalar2<E1, E2, F> >::operator ();
#endif
typedef typename E1::size_type size_type;
typedef typename E1::difference_type difference_type;
typedef typename F::result_type value_type;
typedef value_type const_reference;
typedef const_reference reference;
typedef const self_type const_closure_type;
typedef const_closure_type closure_type;
typedef unknown_storage_tag storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
vector_binary_scalar2 (const expression1_type &e1, const expression2_type &e2):
e1_ (e1), e2_ (e2) {}
// Accessors
BOOST_UBLAS_INLINE
size_type size () const {
return e1_.size ();
}
public:
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
return functor_type::apply (e1_ (i), e2_);
}
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
return functor_type::apply (e1_ [i], e2_);
}
// Closure comparison
BOOST_UBLAS_INLINE
bool same_closure (const vector_binary_scalar2 &vbs2) const {
return (*this).e1_.same_closure (vbs2.e1_) &&
&e2_ == &(vbs2.e2_);
}
// Iterator types
private:
typedef typename expression1_type::const_iterator const_subiterator1_type;
typedef expression2_type const_subiterator2_type;
typedef const value_type *const_pointer;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_const_iterator<const_closure_type, typename const_subiterator2_type::iterator_category> const_iterator;
typedef const_iterator iterator;
#else
class const_iterator;
typedef const_iterator iterator;
#endif
// Element lookup
BOOST_UBLAS_INLINE
const_iterator find (size_type i) const {
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
const_subiterator1_type it (e1_.find (i));
return const_iterator (*this, it.index ());
#else
return const_iterator (*this, e1_.find (i), const_subiterator2_type (e2_));
#endif
}
// Iterator enhances the iterator of the referenced vector expression
// with the binary functor.
#ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR
class const_iterator:
public container_const_reference<vector_binary_scalar2>,
public iterator_base_traits<typename E1::const_iterator::iterator_category>::template
iterator_base<const_iterator, value_type>::type {
public:
typedef typename E1::const_iterator::iterator_category iterator_category;
typedef typename vector_binary_scalar2::difference_type difference_type;
typedef typename vector_binary_scalar2::value_type value_type;
typedef typename vector_binary_scalar2::const_reference reference;
typedef typename vector_binary_scalar2::const_pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator ():
container_const_reference<self_type> (), it1_ (), it2_ () {}
BOOST_UBLAS_INLINE
const_iterator (const self_type &vbs, const const_subiterator1_type &it1, const const_subiterator2_type &it2):
container_const_reference<self_type> (vbs), it1_ (it1), it2_ (it2) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator &operator ++ () {
++ it1_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -- () {
-- it1_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator += (difference_type n) {
it1_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -= (difference_type n) {
it1_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
// FIXME we shouldn't compare floats
// BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ - it.it1_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
return functor_type::apply (*it1_, it2_);
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
return it1_.index ();
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
container_const_reference<self_type>::assign (&it ());
it1_ = it.it1_;
it2_ = it.it2_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
// FIXME we shouldn't compare floats
// BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ == it.it1_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ());
// FIXME we shouldn't compare floats
// BOOST_UBLAS_CHECK (it2_ == it.it2_, external_logic ());
return it1_ < it.it1_;
}
private:
const_subiterator1_type it1_;
const_subiterator2_type it2_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator begin () const {
return find (0);
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return find (size ());
}
// Reverse iterator
typedef reverse_iterator_base<const_iterator> const_reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
private:
expression1_closure_type e1_;
expression2_closure_type e2_;
};
template<class E1, class E2, class F>
struct vector_binary_scalar2_traits {
typedef vector_binary_scalar2<E1, E2, F> expression_type; // allow E2 to be builtin type
#ifndef BOOST_UBLAS_SIMPLE_ET_DEBUG
typedef expression_type result_type;
#else
typedef typename E1::vector_temporary_type result_type;
#endif
};
// (v * t) [i] = v [i] * t
template<class E1, class T2>
BOOST_UBLAS_INLINE
typename vector_binary_scalar2_traits<E1, const T2, scalar_multiplies<typename E1::value_type, T2> >::result_type
operator * (const vector_expression<E1> &e1,
const T2 &e2) {
typedef typename vector_binary_scalar2_traits<E1, const T2, scalar_multiplies<typename E1::value_type, T2> >::expression_type expression_type;
return expression_type (e1 (), e2);
}
// (v / t) [i] = v [i] / t
template<class E1, class T2>
BOOST_UBLAS_INLINE
typename vector_binary_scalar2_traits<E1, const T2, scalar_divides<typename E1::value_type, T2> >::result_type
operator / (const vector_expression<E1> &e1,
const T2 &e2) {
typedef typename vector_binary_scalar2_traits<E1, const T2, scalar_divides<typename E1::value_type, T2> >::expression_type expression_type;
return expression_type (e1 (), e2);
}
template<class E, class F>
class vector_scalar_unary:
public scalar_expression<vector_scalar_unary<E, F> > {
typedef E expression_type;
typedef F functor_type;
typedef typename E::const_closure_type expression_closure_type;
typedef typename E::const_iterator::iterator_category iterator_category;
typedef vector_scalar_unary<E, F> self_type;
public:
typedef typename F::result_type value_type;
typedef typename E::difference_type difference_type;
typedef const self_type const_closure_type;
typedef const_closure_type closure_type;
typedef unknown_storage_tag storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
explicit vector_scalar_unary (const expression_type &e):
e_ (e) {}
private:
// Expression accessors
BOOST_UBLAS_INLINE
const expression_closure_type &expression () const {
return e_;
}
public:
BOOST_UBLAS_INLINE
operator value_type () const {
return evaluate (iterator_category ());
}
private:
// Dense random access specialization
BOOST_UBLAS_INLINE
value_type evaluate (dense_random_access_iterator_tag) const {
#ifdef BOOST_UBLAS_USE_INDEXING
return functor_type::apply (e_);
#elif BOOST_UBLAS_USE_ITERATING
difference_type size = e_.size ();
return functor_type::apply (size, e_.begin ());
#else
difference_type size = e_.size ();
if (size >= BOOST_UBLAS_ITERATOR_THRESHOLD)
return functor_type::apply (size, e_.begin ());
else
return functor_type::apply (e_);
#endif
}
// Packed bidirectional specialization
BOOST_UBLAS_INLINE
value_type evaluate (packed_random_access_iterator_tag) const {
return functor_type::apply (e_.begin (), e_.end ());
}
// Sparse bidirectional specialization
BOOST_UBLAS_INLINE
value_type evaluate (sparse_bidirectional_iterator_tag) const {
return functor_type::apply (e_.begin (), e_.end ());
}
private:
expression_closure_type e_;
};
template<class E, class F>
struct vector_scalar_unary_traits {
typedef vector_scalar_unary<E, F> expression_type;
#if !defined (BOOST_UBLAS_SIMPLE_ET_DEBUG) && defined (BOOST_UBLAS_USE_SCALAR_ET)
// FIXME don't define USE_SCALAR_ET other then for testing
// They do not work for complex types
typedef expression_type result_type;
#else
typedef typename F::result_type result_type;
#endif
};
// sum v = sum (v [i])
template<class E>
BOOST_UBLAS_INLINE
typename vector_scalar_unary_traits<E, vector_sum<E> >::result_type
sum (const vector_expression<E> &e) {
typedef typename vector_scalar_unary_traits<E, vector_sum<E> >::expression_type expression_type;
return expression_type (e ());
}
// real: norm_1 v = sum (abs (v [i]))
// complex: norm_1 v = sum (abs (real (v [i])) + abs (imag (v [i])))
template<class E>
BOOST_UBLAS_INLINE
typename vector_scalar_unary_traits<E, vector_norm_1<E> >::result_type
norm_1 (const vector_expression<E> &e) {
typedef typename vector_scalar_unary_traits<E, vector_norm_1<E> >::expression_type expression_type;
return expression_type (e ());
}
// real: norm_2 v = sqrt (sum (v [i] * v [i]))
// complex: norm_2 v = sqrt (sum (v [i] * conj (v [i])))
template<class E>
BOOST_UBLAS_INLINE
typename vector_scalar_unary_traits<E, vector_norm_2<E> >::result_type
norm_2 (const vector_expression<E> &e) {
typedef typename vector_scalar_unary_traits<E, vector_norm_2<E> >::expression_type expression_type;
return expression_type (e ());
}
// real: norm_inf v = maximum (abs (v [i]))
// complex: norm_inf v = maximum (maximum (abs (real (v [i])), abs (imag (v [i]))))
template<class E>
BOOST_UBLAS_INLINE
typename vector_scalar_unary_traits<E, vector_norm_inf<E> >::result_type
norm_inf (const vector_expression<E> &e) {
typedef typename vector_scalar_unary_traits<E, vector_norm_inf<E> >::expression_type expression_type;
return expression_type (e ());
}
// real: index_norm_inf v = minimum (i: abs (v [i]) == maximum (abs (v [i])))
template<class E>
BOOST_UBLAS_INLINE
typename vector_scalar_unary_traits<E, vector_index_norm_inf<E> >::result_type
index_norm_inf (const vector_expression<E> &e) {
typedef typename vector_scalar_unary_traits<E, vector_index_norm_inf<E> >::expression_type expression_type;
return expression_type (e ());
}
template<class E1, class E2, class F>
class vector_scalar_binary:
public scalar_expression<vector_scalar_binary<E1, E2, F> > {
typedef E1 expression1_type;
typedef E2 expression2_type;
typedef F functor_type;
typedef typename E1::const_closure_type expression1_closure_type;
typedef typename E2::const_closure_type expression2_closure_type;
typedef typename iterator_restrict_traits<typename E1::const_iterator::iterator_category,
typename E2::const_iterator::iterator_category>::iterator_category iterator_category;
typedef vector_scalar_binary<E1, E2, F> self_type;
public:
static const unsigned complexity = 1;
typedef typename F::result_type value_type;
typedef typename E1::difference_type difference_type;
typedef const self_type const_closure_type;
typedef const_closure_type closure_type;
typedef unknown_storage_tag storage_category;
// Construction and destruction
BOOST_UBLAS_INLINE
vector_scalar_binary (const expression1_type &e1, const expression2_type &e2):
e1_ (e1), e2_ (e2) {}
private:
// Accessors
BOOST_UBLAS_INLINE
const expression1_closure_type &expression1 () const {
return e1_;
}
BOOST_UBLAS_INLINE
const expression2_closure_type &expression2 () const {
return e2_;
}
public:
BOOST_UBLAS_INLINE
operator value_type () const {
return evaluate (iterator_category ());
}
private:
// Dense random access specialization
BOOST_UBLAS_INLINE
value_type evaluate (dense_random_access_iterator_tag) const {
BOOST_UBLAS_CHECK (e1_.size () == e2_.size (), external_logic());
#ifdef BOOST_UBLAS_USE_INDEXING
return functor_type::apply (e1_, e2_);
#elif BOOST_UBLAS_USE_ITERATING
difference_type size = BOOST_UBLAS_SAME (e1_.size (), e2_.size ());
return functor_type::apply (size, e1_.begin (), e2_.begin ());
#else
difference_type size = BOOST_UBLAS_SAME (e1_.size (), e2_.size ());
if (size >= BOOST_UBLAS_ITERATOR_THRESHOLD)
return functor_type::apply (size, e1_.begin (), e2_.begin ());
else
return functor_type::apply (e1_, e2_);
#endif
}
// Packed bidirectional specialization
BOOST_UBLAS_INLINE
value_type evaluate (packed_random_access_iterator_tag) const {
BOOST_UBLAS_CHECK (e1_.size () == e2_.size (), external_logic());
return functor_type::apply (e1_.begin (), e1_.end (), e2_.begin (), e2_.end ());
}
// Sparse bidirectional specialization
BOOST_UBLAS_INLINE
value_type evaluate (sparse_bidirectional_iterator_tag) const {
BOOST_UBLAS_CHECK (e1_.size () == e2_.size (), external_logic());
return functor_type::apply (e1_.begin (), e1_.end (), e2_.begin (), e2_.end (), sparse_bidirectional_iterator_tag ());
}
private:
expression1_closure_type e1_;
expression2_closure_type e2_;
};
template<class E1, class E2, class F>
struct vector_scalar_binary_traits {
typedef vector_scalar_binary<E1, E2, F> expression_type;
#if !defined (BOOST_UBLAS_SIMPLE_ET_DEBUG) && defined (BOOST_UBLAS_USE_SCALAR_ET)
// FIXME don't define USE_SCALAR_ET other then for testing
// They do not work for complex types
typedef expression_type result_type;
#else
typedef typename F::result_type result_type;
#endif
};
// inner_prod (v1, v2) = sum (v1 [i] * v2 [i])
template<class E1, class E2>
BOOST_UBLAS_INLINE
typename vector_scalar_binary_traits<E1, E2, vector_inner_prod<E1, E2,
typename promote_traits<typename E1::value_type,
typename E2::value_type>::promote_type> >::result_type
inner_prod (const vector_expression<E1> &e1,
const vector_expression<E2> &e2) {
typedef typename vector_scalar_binary_traits<E1, E2, vector_inner_prod<E1, E2,
typename promote_traits<typename E1::value_type,
typename E2::value_type>::promote_type> >::expression_type expression_type;
return expression_type (e1 (), e2 ());
}
template<class E1, class E2>
BOOST_UBLAS_INLINE
typename vector_scalar_binary_traits<E1, E2, vector_inner_prod<E1, E2,
typename type_traits<typename promote_traits<typename E1::value_type,
typename E2::value_type>::promote_type>::precision_type> >::result_type
prec_inner_prod (const vector_expression<E1> &e1,
const vector_expression<E2> &e2) {
typedef typename vector_scalar_binary_traits<E1, E2, vector_inner_prod<E1, E2,
typename type_traits<typename promote_traits<typename E1::value_type,
typename E2::value_type>::promote_type>::precision_type> >::expression_type expression_type;
return expression_type (e1 (), e2 ());
}
}}}
#endif