boost/lambda/detail/lambda_functors.hpp
// Boost Lambda Library - lambda_functors.hpp -------------------------------
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// For more information, see http://www.boost.org
// ------------------------------------------------
#ifndef BOOST_LAMBDA_LAMBDA_FUNCTORS_HPP
#define BOOST_LAMBDA_LAMBDA_FUNCTORS_HPP
namespace boost {
namespace lambda {
// -- lambda_functor --------------------------------------------
// --------------------------------------------------------------
//inline const null_type const_null_type() { return null_type(); }
namespace detail {
namespace {
static const null_type constant_null_type = null_type();
} // unnamed
} // detail
class unused {};
#define cnull_type() detail::constant_null_type
// -- free variables types --------------------------------------------------
// helper to work around the case where the nullary return type deduction
// is always performed, even though the functor is not nullary
namespace detail {
template<int N, class Tuple> struct get_element_or_null_type {
typedef typename
detail::tuple_element_as_reference<N, Tuple>::type type;
};
template<int N> struct get_element_or_null_type<N, null_type> {
typedef null_type type;
};
}
template <int I> struct placeholder;
template<> struct placeholder<FIRST> {
template<class SigArgs> struct sig {
typedef typename detail::get_element_or_null_type<0, SigArgs>::type type;
};
template<class RET, CALL_TEMPLATE_ARGS>
RET call(CALL_FORMAL_ARGS) const {
BOOST_STATIC_ASSERT(boost::is_reference<RET>::value);
CALL_USE_ARGS; // does nothing, prevents warnings for unused args
return a;
}
};
template<> struct placeholder<SECOND> {
template<class SigArgs> struct sig {
typedef typename detail::get_element_or_null_type<1, SigArgs>::type type;
};
template<class RET, CALL_TEMPLATE_ARGS>
RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return b; }
};
template<> struct placeholder<THIRD> {
template<class SigArgs> struct sig {
typedef typename detail::get_element_or_null_type<2, SigArgs>::type type;
};
template<class RET, CALL_TEMPLATE_ARGS>
RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return c; }
};
template<> struct placeholder<EXCEPTION> {
template<class SigArgs> struct sig {
typedef typename detail::get_element_or_null_type<3, SigArgs>::type type;
};
template<class RET, CALL_TEMPLATE_ARGS>
RET call(CALL_FORMAL_ARGS) const { CALL_USE_ARGS; return env; }
};
typedef const lambda_functor<placeholder<FIRST> > placeholder1_type;
typedef const lambda_functor<placeholder<SECOND> > placeholder2_type;
typedef const lambda_functor<placeholder<THIRD> > placeholder3_type;
///////////////////////////////////////////////////////////////////////////////
// free variables are lambda_functors. This is to allow uniform handling with
// other lambda_functors.
// -------------------------------------------------------------------
#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
#pragma warning(push)
#pragma warning(disable:4512) //assignment operator could not be generated
#endif
// -- lambda_functor NONE ------------------------------------------------
template <class T>
class lambda_functor : public T
{
BOOST_STATIC_CONSTANT(int, arity_bits = get_arity<T>::value);
public:
typedef T inherited;
lambda_functor() {}
lambda_functor(const lambda_functor& l) : inherited(l) {}
lambda_functor(const T& t) : inherited(t) {}
template <class SigArgs> struct sig {
typedef typename inherited::template
sig<typename SigArgs::tail_type>::type type;
};
// Note that this return type deduction template is instantiated, even
// if the nullary
// operator() is not called at all. One must make sure that it does not fail.
typedef typename
inherited::template sig<null_type>::type
nullary_return_type;
nullary_return_type operator()() const {
return inherited::template
call<nullary_return_type>
(cnull_type(), cnull_type(), cnull_type(), cnull_type());
}
template<class A>
typename inherited::template sig<tuple<A&> >::type
operator()(A& a) const {
return inherited::template call<
typename inherited::template sig<tuple<A&> >::type
>(a, cnull_type(), cnull_type(), cnull_type());
}
template<class A>
typename inherited::template sig<tuple<A const&> >::type
operator()(A const& a) const {
return inherited::template call<
typename inherited::template sig<tuple<A const&> >::type
>(a, cnull_type(), cnull_type(), cnull_type());
}
template<class A, class B>
typename inherited::template sig<tuple<A&, B&> >::type
operator()(A& a, B& b) const {
return inherited::template call<
typename inherited::template sig<tuple<A&, B&> >::type
>(a, b, cnull_type(), cnull_type());
}
template<class A, class B>
typename inherited::template sig<tuple<A const&, B&> >::type
operator()(A const& a, B& b) const {
return inherited::template call<
typename inherited::template sig<tuple<A const&, B&> >::type
>(a, b, cnull_type(), cnull_type());
}
template<class A, class B>
typename inherited::template sig<tuple<A&, B const&> >::type
operator()(A& a, B const& b) const {
return inherited::template call<
typename inherited::template sig<tuple<A&, B const&> >::type
>(a, b, cnull_type(), cnull_type());
}
template<class A, class B>
typename inherited::template sig<tuple<A const&, B const&> >::type
operator()(A const& a, B const& b) const {
return inherited::template call<
typename inherited::template sig<tuple<A const&, B const&> >::type
>(a, b, cnull_type(), cnull_type());
}
template<class A, class B, class C>
typename inherited::template sig<tuple<A&, B&, C&> >::type
operator()(A& a, B& b, C& c) const
{
return inherited::template call<
typename inherited::template sig<tuple<A&, B&, C&> >::type
>(a, b, c, cnull_type());
}
template<class A, class B, class C>
typename inherited::template sig<tuple<A const&, B const&, C const&> >::type
operator()(A const& a, B const& b, C const& c) const
{
return inherited::template call<
typename inherited::template sig<tuple<A const&, B const&, C const&> >::type
>(a, b, c, cnull_type());
}
// for internal calls with env
template<CALL_TEMPLATE_ARGS>
typename inherited::template sig<tuple<CALL_REFERENCE_TYPES> >::type
internal_call(CALL_FORMAL_ARGS) const {
return inherited::template
call<typename inherited::template
sig<tuple<CALL_REFERENCE_TYPES> >::type>(CALL_ACTUAL_ARGS);
}
template<class A>
const lambda_functor<lambda_functor_base<
other_action<assignment_action>,
boost::tuple<lambda_functor,
typename const_copy_argument <const A>::type> > >
operator=(const A& a) const {
return lambda_functor_base<
other_action<assignment_action>,
boost::tuple<lambda_functor,
typename const_copy_argument <const A>::type> >
( boost::tuple<lambda_functor,
typename const_copy_argument <const A>::type>(*this, a) );
}
template<class A>
const lambda_functor<lambda_functor_base<
other_action<subscript_action>,
boost::tuple<lambda_functor,
typename const_copy_argument <const A>::type> > >
operator[](const A& a) const {
return lambda_functor_base<
other_action<subscript_action>,
boost::tuple<lambda_functor,
typename const_copy_argument <const A>::type> >
( boost::tuple<lambda_functor,
typename const_copy_argument <const A>::type>(*this, a ) );
}
};
#if BOOST_WORKAROUND(BOOST_MSVC, >= 1400)
#pragma warning(pop)
#endif
} // namespace lambda
} // namespace boost
// is_placeholder
#include <boost/is_placeholder.hpp>
namespace boost
{
template<> struct is_placeholder< lambda::lambda_functor< lambda::placeholder<lambda::FIRST> > >
{
enum _vt { value = 1 };
};
template<> struct is_placeholder< lambda::lambda_functor< lambda::placeholder<lambda::SECOND> > >
{
enum _vt { value = 2 };
};
template<> struct is_placeholder< lambda::lambda_functor< lambda::placeholder<lambda::THIRD> > >
{
enum _vt { value = 3 };
};
} // namespace boost
#endif