...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
Author: | David Abrahams, Jeremy Siek, Thomas Witt |
---|---|
Contact: | dave@boost-consulting.com, jsiek@osl.iu.edu, witt@ive.uni-hannover.de |
Organization: | Boost Consulting, Indiana University Open Systems Lab, University of Hanover Institute for Transport Railway Operation and Construction |
Date: | 2006-09-11 |
Copyright: | Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. |
abstract: | The transform iterator adapts an iterator by modifying the operator* to apply a function object to the result of dereferencing the iterator and returning the result. |
---|
Table of Contents
template <class UnaryFunction, class Iterator, class Reference = use_default, class Value = use_default> class transform_iterator { public: typedef /* see below */ value_type; typedef /* see below */ reference; typedef /* see below */ pointer; typedef iterator_traits<Iterator>::difference_type difference_type; typedef /* see below */ iterator_category; transform_iterator(); transform_iterator(Iterator const& x, UnaryFunction f); template<class F2, class I2, class R2, class V2> transform_iterator( transform_iterator<F2, I2, R2, V2> const& t , typename enable_if_convertible<I2, Iterator>::type* = 0 // exposition only , typename enable_if_convertible<F2, UnaryFunction>::type* = 0 // exposition only ); UnaryFunction functor() const; Iterator const& base() const; reference operator*() const; transform_iterator& operator++(); transform_iterator& operator--(); private: Iterator m_iterator; // exposition only UnaryFunction m_f; // exposition only };
If Reference is use_default then the reference member of transform_iterator is result_of<UnaryFunction(iterator_traits<Iterator>::reference)>::type. Otherwise, reference is Reference.
If Value is use_default then the value_type member is remove_cv<remove_reference<reference> >::type. Otherwise, value_type is Value.
If Iterator models Readable Lvalue Iterator and if Iterator models Random Access Traversal Iterator, then iterator_category is convertible to random_access_iterator_tag. Otherwise, if Iterator models Bidirectional Traversal Iterator, then iterator_category is convertible to bidirectional_iterator_tag. Otherwise iterator_category is convertible to forward_iterator_tag. If Iterator does not model Readable Lvalue Iterator then iterator_category is convertible to input_iterator_tag.
The type UnaryFunction must be Assignable, Copy Constructible, and the expression f(*i) must be valid where f is an object of type UnaryFunction, i is an object of type Iterator, and where the type of f(*i) must be result_of<UnaryFunction(iterator_traits<Iterator>::reference)>::type.
The argument Iterator shall model Readable Iterator.
The resulting transform_iterator models the most refined of the following that is also modeled by Iterator.
- Writable Lvalue Iterator if transform_iterator::reference is a non-const reference.
- Readable Lvalue Iterator if transform_iterator::reference is a const reference.
- Readable Iterator otherwise.
The transform_iterator models the most refined standard traversal concept that is modeled by the Iterator argument.
If transform_iterator is a model of Readable Lvalue Iterator then it models the following original iterator concepts depending on what the Iterator argument models.
If Iterator models | then transform_iterator models |
---|---|
Single Pass Iterator | Input Iterator |
Forward Traversal Iterator | Forward Iterator |
Bidirectional Traversal Iterator | Bidirectional Iterator |
Random Access Traversal Iterator | Random Access Iterator |
If transform_iterator models Writable Lvalue Iterator then it is a mutable iterator (as defined in the old iterator requirements).
transform_iterator<F1, X, R1, V1> is interoperable with transform_iterator<F2, Y, R2, V2> if and only if X is interoperable with Y.
In addition to the operations required by the concepts modeled by transform_iterator, transform_iterator provides the following operations.
transform_iterator();
Returns: | An instance of transform_iterator with m_f and m_iterator default constructed. |
---|
transform_iterator(Iterator const& x, UnaryFunction f);
Returns: | An instance of transform_iterator with m_f initialized to f and m_iterator initialized to x. |
---|
template<class F2, class I2, class R2, class V2> transform_iterator( transform_iterator<F2, I2, R2, V2> const& t , typename enable_if_convertible<I2, Iterator>::type* = 0 // exposition only , typename enable_if_convertible<F2, UnaryFunction>::type* = 0 // exposition only );
Returns: | An instance of transform_iterator with m_f initialized to t.functor() and m_iterator initialized to t.base(). |
---|---|
Requires: | OtherIterator is implicitly convertible to Iterator. |
UnaryFunction functor() const;
Returns: | m_f |
---|
Iterator const& base() const;
Returns: | m_iterator |
---|
reference operator*() const;
Returns: | m_f(*m_iterator) |
---|
transform_iterator& operator++();
Effects: | ++m_iterator |
---|---|
Returns: | *this |
transform_iterator& operator--();
Effects: | --m_iterator |
---|---|
Returns: | *this |
template <class UnaryFunction, class Iterator> transform_iterator<UnaryFunction, Iterator> make_transform_iterator(Iterator it, UnaryFunction fun);
Returns: | An instance of transform_iterator<UnaryFunction, Iterator> with m_f initialized to f and m_iterator initialized to x. |
---|
template <class UnaryFunction, class Iterator> transform_iterator<UnaryFunction, Iterator> make_transform_iterator(Iterator it);
Returns: | An instance of transform_iterator<UnaryFunction, Iterator> with m_f default constructed and m_iterator initialized to x. |
---|
This is a simple example of using the transform_iterators class to generate iterators that multiply (or add to) the value returned by dereferencing the iterator. It would be cooler to use lambda library in this example.
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 }; const int N = sizeof(x)/sizeof(int); typedef boost::binder1st< std::multiplies<int> > Function; typedef boost::transform_iterator<Function, int*> doubling_iterator; doubling_iterator i(x, boost::bind1st(std::multiplies<int>(), 2)), i_end(x + N, boost::bind1st(std::multiplies<int>(), 2)); std::cout << "multiplying the array by 2:" << std::endl; while (i != i_end) std::cout << *i++ << " "; std::cout << std::endl; std::cout << "adding 4 to each element in the array:" << std::endl; std::copy(boost::make_transform_iterator(x, boost::bind1st(std::plus<int>(), 4)), boost::make_transform_iterator(x + N, boost::bind1st(std::plus<int>(), 4)), std::ostream_iterator<int>(std::cout, " ")); std::cout << std::endl;
The output is:
multiplying the array by 2: 2 4 6 8 10 12 14 16 adding 4 to each element in the array: 5 6 7 8 9 10 11 12
The source code for this example can be found here.