boost/xpressive/detail/static/width_of.hpp
///////////////////////////////////////////////////////////////////////////////
// width_of.hpp
//
// Copyright 2008 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_XPRESSIVE_DETAIL_STATIC_WIDTH_OF_HPP_EAN_10_04_2005
#define BOOST_XPRESSIVE_DETAIL_STATIC_WIDTH_OF_HPP_EAN_10_04_2005
// MS compatible compilers support #pragma once
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma once
#endif
#include <boost/ref.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/or.hpp>
#include <boost/mpl/plus.hpp>
#include <boost/mpl/times.hpp>
#include <boost/mpl/assert.hpp>
#include <boost/mpl/size_t.hpp>
#include <boost/mpl/equal_to.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/xpressive/detail/detail_fwd.hpp>
#include <boost/proto/traits.hpp>
namespace boost { namespace xpressive { namespace detail
{
template<typename Expr, typename Char, typename Tag = typename Expr::proto_tag>
struct width_of;
///////////////////////////////////////////////////////////////////////////////
// add_widths
//
template<std::size_t N, std::size_t M>
struct add_widths
: mpl::size_t<N + M>
{};
template<std::size_t M>
struct add_widths<unknown_width::value, M>
: unknown_width
{};
template<std::size_t N>
struct add_widths<N, unknown_width::value>
: unknown_width
{};
template<>
struct add_widths<unknown_width::value, unknown_width::value>
: unknown_width
{};
///////////////////////////////////////////////////////////////////////////////
// or_widths
//
template<std::size_t N, std::size_t M>
struct or_widths
: unknown_width
{};
template<std::size_t N>
struct or_widths<N, N>
: mpl::size_t<N>
{};
///////////////////////////////////////////////////////////////////////////////
// is_char
//
template<typename T>
struct is_char
: mpl::false_
{};
template<>
struct is_char<char>
: mpl::true_
{};
template<>
struct is_char<wchar_t>
: mpl::true_
{};
///////////////////////////////////////////////////////////////////////////////
// width_of_terminal
//
template<typename Expr, typename Char, bool IsXpr = is_xpr<Expr>::value>
struct width_of_terminal
: mpl::size_t<Expr::width> // xpressive literals
{};
template<typename Expr, typename Char>
struct width_of_terminal<Expr, Char, false>
: unknown_width // unknown literals (eg, basic_string, basic_regex, etc.)
{};
template<typename Char>
struct width_of_terminal<Char, Char, false>
: mpl::size_t<1> // char literals
{};
template<typename Char>
struct width_of_terminal<char, Char, false>
: mpl::size_t<1> // char literals
{};
template<>
struct width_of_terminal<char, char, false>
: mpl::size_t<1> // char literals
{};
template<typename Elem, std::size_t N, typename Char>
struct width_of_terminal<Elem (&) [N], Char, false>
: mpl::size_t<N-is_char<Elem>::value> // string literals
{};
template<typename Elem, std::size_t N, typename Char>
struct width_of_terminal<Elem const (&) [N], Char, false>
: mpl::size_t<N-is_char<Elem>::value> // string literals
{};
///////////////////////////////////////////////////////////////////////////////
// width_of
//
template<typename Expr, typename Char, typename Tag>
struct width_of
{};
template<typename Expr, typename Char>
struct width_of<Expr, Char, proto::tag::terminal>
: width_of_terminal<typename proto::result_of::value<Expr>::type, Char>
{};
template<typename Expr, typename Char>
struct width_of<Expr, Char, proto::tag::shift_right>
: add_widths<
width_of<typename remove_reference<typename Expr::proto_child0>::type::proto_base_expr, Char>::value
, width_of<typename remove_reference<typename Expr::proto_child1>::type::proto_base_expr, Char>::value
>
{};
template<typename Expr, typename Char>
struct width_of<Expr, Char, proto::tag::bitwise_or>
: or_widths<
width_of<typename remove_reference<typename Expr::proto_child0>::type::proto_base_expr, Char>::value
, width_of<typename remove_reference<typename Expr::proto_child1>::type::proto_base_expr, Char>::value
>
{};
template<typename Expr, typename Char, typename Left>
struct width_of_assign
{};
template<typename Expr, typename Char>
struct width_of_assign<Expr, Char, mark_placeholder>
: width_of<typename remove_reference<typename Expr::proto_child1>::type::proto_base_expr, Char>
{};
template<typename Expr, typename Char>
struct width_of_assign<Expr, Char, set_initializer>
: mpl::size_t<1>
{};
template<typename Expr, typename Char, typename Nbr>
struct width_of_assign<Expr, Char, attribute_placeholder<Nbr> >
: unknown_width
{};
// either (s1 = ...) or (a1 = ...) or (set = ...)
template<typename Expr, typename Char>
struct width_of<Expr, Char, proto::tag::assign>
: width_of_assign<
Expr
, Char
, typename proto::result_of::value<
typename remove_reference<typename Expr::proto_child0>::type::proto_base_expr
>::type
>
{};
template<typename Expr, typename Char>
struct width_of<Expr, Char, modifier_tag>
: width_of<typename remove_reference<typename Expr::proto_child1>::type::proto_base_expr, Char>
{};
template<typename Expr, typename Char>
struct width_of<Expr, Char, lookahead_tag>
: mpl::size_t<0>
{};
template<typename Expr, typename Char>
struct width_of<Expr, Char, lookbehind_tag>
: mpl::size_t<0>
{};
// keep() is used to turn off backtracking, so they should only be used
// for things that are variable-width (eg. quantified)
template<typename Expr, typename Char>
struct width_of<Expr, Char, keeper_tag>
: unknown_width
{
// TODO: keep() now has a second meaning: execute actions immediately.
// In that sense, it is perfectly reasonable to put a fixed-width
// sub-expression in a keep. Can fixed-width keep() sub-expressions
// use the simple_repeat_matcher?
};
template<typename Expr, typename Char>
struct width_of<Expr, Char, proto::tag::unary_plus>
: unknown_width
{};
template<typename Expr, typename Char>
struct width_of<Expr, Char, proto::tag::dereference>
: unknown_width
{};
template<typename Expr, typename Char>
struct width_of<Expr, Char, proto::tag::logical_not>
: unknown_width
{};
template<typename Expr, typename Char, uint_t Min, uint_t Max>
struct width_of<Expr, Char, generic_quant_tag<Min, Max> >
: unknown_width
{};
template<typename Expr, typename Char, uint_t Count>
struct width_of<Expr, Char, generic_quant_tag<Count, Count> >
: mpl::if_<
mpl::equal_to<unknown_width, width_of<typename remove_reference<typename Expr::proto_child0>::type::proto_base_expr, Char> >
, unknown_width
, mpl::times<
width_of<typename remove_reference<typename Expr::proto_child0>::type::proto_base_expr, Char>
, mpl::size_t<Count>
>
>::type
{};
template<typename Expr, typename Char>
struct width_of<Expr, Char, proto::tag::negate>
: width_of<typename remove_reference<typename Expr::proto_child0>::type::proto_base_expr, Char>
{};
// when complementing a set or an assertion, the width is that of the set (1) or the assertion (0)
template<typename Expr, typename Char>
struct width_of<Expr, Char, proto::tag::complement>
: width_of<typename remove_reference<typename Expr::proto_child0>::type::proto_base_expr, Char>
{};
// The comma is used in list-initialized sets, and the width of sets are 1
template<typename Expr, typename Char>
struct width_of<Expr, Char, proto::tag::comma>
: mpl::size_t<1>
{};
// The subscript operator[] is used for sets, as in set['a' | range('b','h')],
// or for actions as in (any >> expr)[ action ]
template<typename Expr, typename Char, typename Left>
struct width_of_subscript
: width_of<Left, Char>
{};
template<typename Expr, typename Char>
struct width_of_subscript<Expr, Char, set_initializer_type>
: mpl::size_t<1>
{
// If Left is "set" then make sure that Right has a width_of 1
BOOST_MPL_ASSERT_RELATION(
1
, ==
, (width_of<typename remove_reference<typename Expr::proto_child1>::type::proto_base_expr, Char>::value));
};
template<typename Expr, typename Char>
struct width_of<Expr, Char, proto::tag::subscript>
: width_of_subscript<Expr, Char, typename remove_reference<typename Expr::proto_child0>::type::proto_base_expr>
{};
}}} // namespace boost::xpressive::detail
#undef UNREF
#endif