boost/math/special_functions/next.hpp
// (C) Copyright John Maddock 2008.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SPECIAL_NEXT_HPP
#define BOOST_MATH_SPECIAL_NEXT_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <boost/math/special_functions/sign.hpp>
#ifdef BOOST_MSVC
#include <float.h>
#endif
namespace boost{ namespace math{
namespace detail{
template <class T>
inline T get_smallest_value(mpl::true_ const&)
{
return std::numeric_limits<T>::denorm_min();
}
template <class T>
inline T get_smallest_value(mpl::false_ const&)
{
return tools::min_value<T>();
}
template <class T>
inline T get_smallest_value()
{
#if defined(BOOST_MSVC) && (BOOST_MSVC <= 1310)
return get_smallest_value<T>(mpl::bool_<std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == 1)>());
#else
return get_smallest_value<T>(mpl::bool_<std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == std::denorm_present)>());
#endif
}
}
template <class T, class Policy>
T float_next(const T& val, const Policy& pol)
{
BOOST_MATH_STD_USING
int expon;
static const char* function = "float_next<%1%>(%1%)";
if(!(boost::math::isfinite)(val))
return policies::raise_domain_error<T>(
function,
"Argument must be finite, but got %1%", val, pol);
if(val >= tools::max_value<T>())
return policies::raise_overflow_error<T>(function, 0, pol);
if(val == 0)
return detail::get_smallest_value<T>();
if(-0.5f == frexp(val, &expon))
--expon; // reduce exponent when val is a power of two, and negative.
T diff = ldexp(T(1), expon - tools::digits<T>());
if(diff == 0)
diff = detail::get_smallest_value<T>();
return val + diff;
}
#ifdef BOOST_MSVC
template <class Policy>
inline double float_next(const double& val, const Policy& pol)
{
static const char* function = "float_next<%1%>(%1%)";
if(!(boost::math::isfinite)(val))
return policies::raise_domain_error<double>(
function,
"Argument must be finite, but got %1%", val, pol);
if(val >= tools::max_value<double>())
return policies::raise_overflow_error<double>(function, 0, pol);
return ::_nextafter(val, tools::max_value<double>());
}
#endif
template <class T>
inline T float_next(const T& val)
{
return float_next(val, policies::policy<>());
}
template <class T, class Policy>
T float_prior(const T& val, const Policy& pol)
{
BOOST_MATH_STD_USING
int expon;
static const char* function = "float_prior<%1%>(%1%)";
if(!(boost::math::isfinite)(val))
return policies::raise_domain_error<T>(
function,
"Argument must be finite, but got %1%", val, pol);
if(val <= -tools::max_value<T>())
return -policies::raise_overflow_error<T>(function, 0, pol);
if(val == 0)
return -detail::get_smallest_value<T>();
T remain = frexp(val, &expon);
if(remain == 0.5)
--expon; // when val is a power of two we must reduce the exponent
T diff = ldexp(T(1), expon - tools::digits<T>());
if(diff == 0)
diff = detail::get_smallest_value<T>();
return val - diff;
}
#ifdef BOOST_MSVC
template <class Policy>
inline double float_prior(const double& val, const Policy& pol)
{
static const char* function = "float_prior<%1%>(%1%)";
if(!(boost::math::isfinite)(val))
return policies::raise_domain_error<double>(
function,
"Argument must be finite, but got %1%", val, pol);
if(val <= -tools::max_value<double>())
return -policies::raise_overflow_error<double>(function, 0, pol);
return ::_nextafter(val, -tools::max_value<double>());
}
#endif
template <class T>
inline T float_prior(const T& val)
{
return float_prior(val, policies::policy<>());
}
template <class T, class Policy>
inline T nextafter(const T& val, const T& direction, const Policy& pol)
{
return val < direction ? boost::math::float_next(val, pol) : val == direction ? val : boost::math::float_prior(val, pol);
}
template <class T>
inline T nextafter(const T& val, const T& direction)
{
return nextafter(val, direction, policies::policy<>());
}
template <class T, class Policy>
T float_distance(const T& a, const T& b, const Policy& pol)
{
BOOST_MATH_STD_USING
//
// Error handling:
//
static const char* function = "float_distance<%1%>(%1%, %1%)";
if(!(boost::math::isfinite)(a))
return policies::raise_domain_error<T>(
function,
"Argument a must be finite, but got %1%", a, pol);
if(!(boost::math::isfinite)(b))
return policies::raise_domain_error<T>(
function,
"Argument b must be finite, but got %1%", b, pol);
//
// Special cases:
//
if(a > b)
return -float_distance(b, a);
if(a == b)
return 0;
if(a == 0)
return 1 + fabs(float_distance(boost::math::sign(b) * detail::get_smallest_value<T>(), b, pol));
if(b == 0)
return 1 + fabs(float_distance(boost::math::sign(a) * detail::get_smallest_value<T>(), a, pol));
if(boost::math::sign(a) != boost::math::sign(b))
return 2 + fabs(float_distance(boost::math::sign(b) * detail::get_smallest_value<T>(), b, pol))
+ fabs(float_distance(boost::math::sign(a) * detail::get_smallest_value<T>(), a, pol));
//
// By the time we get here, both a and b must have the same sign, we want
// b > a and both postive for the following logic:
//
if(a < 0)
return float_distance(-b, -a);
BOOST_ASSERT(a >= 0);
BOOST_ASSERT(b >= a);
BOOST_MATH_STD_USING
int expon;
//
// Note that if a is a denorm then the usual formula fails
// because we actually have fewer than tools::digits<T>()
// significant bits in the representation:
//
frexp(((boost::math::fpclassify)(a) == FP_SUBNORMAL) ? tools::min_value<T>() : a, &expon);
T upper = ldexp(T(1), expon);
T result = 0;
expon = tools::digits<T>() - expon;
//
// If b is greater than upper, then we *must* split the calculation
// as the size of the ULP changes with each order of magnitude change:
//
if(b > upper)
{
result = float_distance(upper, b);
}
//
// Use compensated double-double addition to avoid rounding
// errors in the subtraction:
//
T mb = -(std::min)(upper, b);
T x = a + mb;
T z = x - a;
T y = (a - (x - z)) + (mb - z);
if(x < 0)
{
x = -x;
y = -y;
}
result += ldexp(x, expon) + ldexp(y, expon);
//
// Result must be an integer:
//
BOOST_ASSERT(result == floor(result));
return result;
}
template <class T>
T float_distance(const T& a, const T& b)
{
return boost::math::float_distance(a, b, policies::policy<>());
}
template <class T, class Policy>
T float_advance(T val, int distance, const Policy& pol)
{
//
// Error handling:
//
static const char* function = "float_advance<%1%>(%1%, int)";
if(!(boost::math::isfinite)(val))
return policies::raise_domain_error<T>(
function,
"Argument val must be finite, but got %1%", val, pol);
if(val < 0)
return -float_advance(-val, -distance, pol);
if(distance == 0)
return val;
if(distance == 1)
return float_next(val, pol);
if(distance == -1)
return float_prior(val, pol);
BOOST_MATH_STD_USING
int expon;
frexp(val, &expon);
T limit = ldexp((distance < 0 ? T(0.5f) : T(1)), expon);
if(val <= tools::min_value<T>())
{
limit = sign(T(distance)) * tools::min_value<T>();
}
T limit_distance = float_distance(val, limit);
while(fabs(limit_distance) < abs(distance))
{
distance -= itrunc(limit_distance);
val = limit;
if(distance < 0)
{
limit /= 2;
expon--;
}
else
{
limit *= 2;
expon++;
}
limit_distance = float_distance(val, limit);
}
if((0.5f == frexp(val, &expon)) && (distance < 0))
--expon;
T diff = 0;
if(val != 0)
diff = distance * ldexp(T(1), expon - tools::digits<T>());
if(diff == 0)
diff = distance * detail::get_smallest_value<T>();
return val += diff;
}
template <class T>
inline T float_advance(const T& val, int distance)
{
return boost::math::float_advance(val, distance, policies::policy<>());
}
}} // namespaces
#endif // BOOST_MATH_SPECIAL_NEXT_HPP