Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.

boost/intrusive/avltree_algorithms.hpp

/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Daniel K. O. 2005.
// (C) Copyright Ion Gaztanaga 2007.
//
// Distributed under the Boost Software License, Version 1.0.
//    (See accompanying file LICENSE_1_0.txt or copy at
//          http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////

#ifndef BOOST_INTRUSIVE_AVLTREE_ALGORITHMS_HPP
#define BOOST_INTRUSIVE_AVLTREE_ALGORITHMS_HPP

#include <boost/intrusive/detail/config_begin.hpp>

#include <cstddef>
#include <boost/intrusive/intrusive_fwd.hpp>

#include <boost/intrusive/detail/assert.hpp>
#include <boost/intrusive/detail/utilities.hpp>
#include <boost/intrusive/detail/tree_algorithms.hpp>


namespace boost {
namespace intrusive {

//! avltree_algorithms is configured with a NodeTraits class, which encapsulates the
//! information about the node to be manipulated. NodeTraits must support the
//! following interface:
//!
//! <b>Typedefs</b>:
//!
//! <tt>node</tt>: The type of the node that forms the circular list
//!
//! <tt>node_ptr</tt>: A pointer to a node
//!
//! <tt>const_node_ptr</tt>: A pointer to a const node
//!
//! <tt>balance</tt>: The type of the balance factor
//!
//! <b>Static functions</b>:
//!
//! <tt>static node_ptr get_parent(const_node_ptr n);</tt>
//! 
//! <tt>static void set_parent(node_ptr n, node_ptr parent);</tt>
//!
//! <tt>static node_ptr get_left(const_node_ptr n);</tt>
//! 
//! <tt>static void set_left(node_ptr n, node_ptr left);</tt>
//!
//! <tt>static node_ptr get_right(const_node_ptr n);</tt>
//! 
//! <tt>static void set_right(node_ptr n, node_ptr right);</tt>
//! 
//! <tt>static balance get_balance(const_node_ptr n);</tt>
//! 
//! <tt>static void set_balance(node_ptr n, balance b);</tt>
//! 
//! <tt>static balance negative();</tt>
//! 
//! <tt>static balance zero();</tt>
//! 
//! <tt>static balance positive();</tt>
template<class NodeTraits>
class avltree_algorithms
{
   public:
   typedef typename NodeTraits::node            node;
   typedef NodeTraits                           node_traits;
   typedef typename NodeTraits::node_ptr        node_ptr;
   typedef typename NodeTraits::const_node_ptr  const_node_ptr;
   typedef typename NodeTraits::balance         balance;

   /// @cond
   private:
   typedef detail::tree_algorithms<NodeTraits>  tree_algorithms;

   template<class F>
   struct avltree_node_cloner
      :  private detail::ebo_functor_holder<F>
   {
      typedef detail::ebo_functor_holder<F>                 base_t;

      avltree_node_cloner(F f)
         :  base_t(f)
      {}
      
      node_ptr operator()(node_ptr p)
      {
         node_ptr n = base_t::get()(p);
         NodeTraits::set_balance(n, NodeTraits::get_balance(p));
         return n;
      }
   };

   struct avltree_erase_fixup
   {
      void operator()(node_ptr to_erase, node_ptr successor)
      {  NodeTraits::set_balance(successor, NodeTraits::get_balance(to_erase));  }
   };

   static node_ptr uncast(const_node_ptr ptr)
   {
      return node_ptr(const_cast<node*>(::boost::intrusive::detail::get_pointer(ptr)));
   }
   /// @endcond

   public:
   static node_ptr begin_node(const_node_ptr header)
   {  return tree_algorithms::begin_node(header);   }

   static node_ptr end_node(const_node_ptr header)
   {  return tree_algorithms::end_node(header);   }

   //! This type is the information that will be
   //! filled by insert_unique_check
   typedef typename tree_algorithms::insert_commit_data insert_commit_data;

   //! <b>Requires</b>: header1 and header2 must be the header nodes
   //!  of two trees.
   //! 
   //! <b>Effects</b>: Swaps two trees. After the function header1 will contain 
   //!   links to the second tree and header2 will have links to the first tree.
   //! 
   //! <b>Complexity</b>: Constant. 
   //! 
   //! <b>Throws</b>: Nothing.
   static void swap_tree(node_ptr header1, node_ptr header2)
   {  return tree_algorithms::swap_tree(header1, header2);  }

   //! <b>Requires</b>: node1 and node2 can't be header nodes
   //!  of two trees.
   //! 
   //! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
   //!   in the position node2 before the function. node2 will be inserted in the
   //!   position node1 had before the function.
   //! 
   //! <b>Complexity</b>: Logarithmic. 
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Note</b>: This function will break container ordering invariants if
   //!   node1 and node2 are not equivalent according to the ordering rules.
   //!
   //!Experimental function
   static void swap_nodes(node_ptr node1, node_ptr node2)
   {
      if(node1 == node2)
         return;
   
      node_ptr header1(tree_algorithms::get_header(node1)), header2(tree_algorithms::get_header(node2));
      swap_nodes(node1, header1, node2, header2);
   }

   //! <b>Requires</b>: node1 and node2 can't be header nodes
   //!  of two trees with header header1 and header2.
   //! 
   //! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
   //!   in the position node2 before the function. node2 will be inserted in the
   //!   position node1 had before the function.
   //! 
   //! <b>Complexity</b>: Constant. 
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Note</b>: This function will break container ordering invariants if
   //!   node1 and node2 are not equivalent according to the ordering rules.
   //!
   //!Experimental function
   static void swap_nodes(node_ptr node1, node_ptr header1, node_ptr node2, node_ptr header2)
   {
      if(node1 == node2)   return;

      tree_algorithms::swap_nodes(node1, header1, node2, header2);
      //Swap balance
      balance c = NodeTraits::get_balance(node1);
      NodeTraits::set_balance(node1, NodeTraits::get_balance(node2)); 
      NodeTraits::set_balance(node2, c); 
   }

   //! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
   //!   and new_node must not be inserted in a tree.
   //! 
   //! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
   //!   tree with new_node. The tree does not need to be rebalanced
   //! 
   //! <b>Complexity</b>: Logarithmic. 
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Note</b>: This function will break container ordering invariants if
   //!   new_node is not equivalent to node_to_be_replaced according to the
   //!   ordering rules. This function is faster than erasing and inserting
   //!   the node, since no rebalancing and comparison is needed.
   //!
   //!Experimental function
   static void replace_node(node_ptr node_to_be_replaced, node_ptr new_node)
   {
      if(node_to_be_replaced == new_node)
         return;
      replace_node(node_to_be_replaced, tree_algorithms::get_header(node_to_be_replaced), new_node);
   }

   //! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
   //!   with header "header" and new_node must not be inserted in a tree.
   //! 
   //! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
   //!   tree with new_node. The tree does not need to be rebalanced
   //! 
   //! <b>Complexity</b>: Constant. 
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Note</b>: This function will break container ordering invariants if
   //!   new_node is not equivalent to node_to_be_replaced according to the
   //!   ordering rules. This function is faster than erasing and inserting
   //!   the node, since no rebalancing or comparison is needed.
   //!
   //!Experimental function
   static void replace_node(node_ptr node_to_be_replaced, node_ptr header, node_ptr new_node)
   {
      tree_algorithms::replace_node(node_to_be_replaced, header, new_node);
      NodeTraits::set_balance(new_node, NodeTraits::get_balance(node_to_be_replaced)); 
   }

   //! <b>Requires</b>: node is a tree node but not the header.
   //! 
   //! <b>Effects</b>: Unlinks the node and rebalances the tree.
   //! 
   //! <b>Complexity</b>: Average complexity is constant time.
   //! 
   //! <b>Throws</b>: Nothing.
   static void unlink(node_ptr node)
   {
      node_ptr x = NodeTraits::get_parent(node);
      if(x){
         while(!is_header(x))
            x = NodeTraits::get_parent(x);
         erase(x, node);
      }
   }

   //! <b>Requires</b>: header is the header of a tree.
   //! 
   //! <b>Effects</b>: Unlinks the leftmost node from the tree, and
   //!   updates the header link to the new leftmost node.
   //! 
   //! <b>Complexity</b>: Average complexity is constant time.
   //! 
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Notes</b>: This function breaks the tree and the tree can
   //!   only be used for more unlink_leftmost_without_rebalance calls.
   //!   This function is normally used to achieve a step by step
   //!   controlled destruction of the tree.
   static node_ptr unlink_leftmost_without_rebalance(node_ptr header)
   {  return tree_algorithms::unlink_leftmost_without_rebalance(header);   }

   //! <b>Requires</b>: node is a node of the tree or an node initialized
   //!   by init(...).
   //! 
   //! <b>Effects</b>: Returns true if the node is initialized by init().
   //! 
   //! <b>Complexity</b>: Constant time.
   //! 
   //! <b>Throws</b>: Nothing.
   static bool unique(const_node_ptr node)
   {  return tree_algorithms::unique(node);  }

   //! <b>Requires</b>: node is a node of the tree but it's not the header.
   //! 
   //! <b>Effects</b>: Returns the number of nodes of the subtree.
   //! 
   //! <b>Complexity</b>: Linear time.
   //! 
   //! <b>Throws</b>: Nothing.
   static std::size_t count(const_node_ptr node)
   {  return tree_algorithms::count(node);   }

   //! <b>Requires</b>: header is the header node of the tree.
   //! 
   //! <b>Effects</b>: Returns the number of nodes above the header.
   //! 
   //! <b>Complexity</b>: Linear time.
   //! 
   //! <b>Throws</b>: Nothing.
   static std::size_t size(const_node_ptr header)
   {  return tree_algorithms::size(header);   }

   //! <b>Requires</b>: p is a node from the tree except the header.
   //! 
   //! <b>Effects</b>: Returns the next node of the tree.
   //! 
   //! <b>Complexity</b>: Average constant time.
   //! 
   //! <b>Throws</b>: Nothing.
   static node_ptr next_node(node_ptr p)
   {  return tree_algorithms::next_node(p); }

   //! <b>Requires</b>: p is a node from the tree except the leftmost node.
   //! 
   //! <b>Effects</b>: Returns the previous node of the tree.
   //! 
   //! <b>Complexity</b>: Average constant time.
   //! 
   //! <b>Throws</b>: Nothing.
   static node_ptr prev_node(node_ptr p)
   {  return tree_algorithms::prev_node(p); }

   //! <b>Requires</b>: node must not be part of any tree.
   //!
   //! <b>Effects</b>: After the function unique(node) == true.
   //! 
   //! <b>Complexity</b>: Constant.
   //! 
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
   static void init(node_ptr node)
   {  tree_algorithms::init(node);  }

   //! <b>Requires</b>: node must not be part of any tree.
   //!
   //! <b>Effects</b>: Initializes the header to represent an empty tree.
   //!   unique(header) == true.
   //! 
   //! <b>Complexity</b>: Constant.
   //! 
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
   static void init_header(node_ptr header)
   {
      tree_algorithms::init_header(header);
      NodeTraits::set_balance(header, NodeTraits::zero()); 
   }

   //! <b>Requires</b>: header must be the header of a tree, z a node
   //!    of that tree and z != header.
   //!
   //! <b>Effects</b>: Erases node "z" from the tree with header "header".
   //! 
   //! <b>Complexity</b>: Amortized constant time.
   //! 
   //! <b>Throws</b>: Nothing.
   static node_ptr erase(node_ptr header, node_ptr z)
   {
      typename tree_algorithms::data_for_rebalance info;
      tree_algorithms::erase(header, z, avltree_erase_fixup(), info);
      node_ptr x = info.x;
      node_ptr x_parent = info.x_parent;

      //Rebalance avltree
      rebalance_after_erasure(header, x, x_parent);
      return z;
   }

   //! <b>Requires</b>: "cloner" must be a function
   //!   object taking a node_ptr and returning a new cloned node of it. "disposer" must
   //!   take a node_ptr and shouldn't throw.
   //!
   //! <b>Effects</b>: First empties target tree calling 
   //!   <tt>void disposer::operator()(node_ptr)</tt> for every node of the tree
   //!    except the header.
   //!    
   //!   Then, duplicates the entire tree pointed by "source_header" cloning each
   //!   source node with <tt>node_ptr Cloner::operator()(node_ptr)</tt> to obtain 
   //!   the nodes of the target tree. If "cloner" throws, the cloned target nodes
   //!   are disposed using <tt>void disposer(node_ptr)</tt>.
   //! 
   //! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
   //!   number of elements of tree target tree when calling this function.
   //! 
   //! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
   template <class Cloner, class Disposer>
   static void clone
      (const_node_ptr source_header, node_ptr target_header, Cloner cloner, Disposer disposer)
   {
      avltree_node_cloner<Cloner> new_cloner(cloner);
      tree_algorithms::clone(source_header, target_header, new_cloner, disposer);
   }

   //! <b>Requires</b>: "disposer" must be an object function
   //!   taking a node_ptr parameter and shouldn't throw.
   //!
   //! <b>Effects</b>: Empties the target tree calling 
   //!   <tt>void disposer::operator()(node_ptr)</tt> for every node of the tree
   //!    except the header.
   //! 
   //! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
   //!   number of elements of tree target tree when calling this function.
   //! 
   //! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
   template<class Disposer>
   static void clear_and_dispose(node_ptr header, Disposer disposer)
   {  tree_algorithms::clear_and_dispose(header, disposer); }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!
   //! <b>Effects</b>: Returns an node_ptr to the first element that is
   //!   not less than "key" according to "comp" or "header" if that element does
   //!   not exist.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //! 
   //! <b>Throws</b>: If "comp" throws.
   template<class KeyType, class KeyNodePtrCompare>
   static node_ptr lower_bound
      (const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
   {  return tree_algorithms::lower_bound(header, key, comp);  }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!
   //! <b>Effects</b>: Returns an node_ptr to the first element that is greater
   //!   than "key" according to "comp" or "header" if that element does not exist.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //! 
   //! <b>Throws</b>: If "comp" throws.
   template<class KeyType, class KeyNodePtrCompare>
   static node_ptr upper_bound
      (const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
   {  return tree_algorithms::upper_bound(header, key, comp);  }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!
   //! <b>Effects</b>: Returns an node_ptr to the element that is equivalent to
   //!   "key" according to "comp" or "header" if that element does not exist.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //! 
   //! <b>Throws</b>: If "comp" throws.
   template<class KeyType, class KeyNodePtrCompare>
   static node_ptr find
      (const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
   {  return tree_algorithms::find(header, key, comp);  }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
   //!
   //! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
   //!   all elements that are equivalent to "key" according to "comp" or an
   //!   empty range that indicates the position where those elements would be
   //!   if they there are no equivalent elements.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //! 
   //! <b>Throws</b>: If "comp" throws.
   template<class KeyType, class KeyNodePtrCompare>
   static std::pair<node_ptr, node_ptr> equal_range
      (const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
   {  return tree_algorithms::equal_range(header, key, comp);  }

   //! <b>Requires</b>: "h" must be the header node of a tree.
   //!   NodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares two node_ptrs.
   //!
   //! <b>Effects</b>: Inserts new_node into the tree before the upper bound
   //!   according to "comp".
   //! 
   //! <b>Complexity</b>: Average complexity for insert element is at
   //!   most logarithmic.
   //! 
   //! <b>Throws</b>: If "comp" throws.
   template<class NodePtrCompare>
   static node_ptr insert_equal_upper_bound
      (node_ptr h, node_ptr new_node, NodePtrCompare comp)
   {
      tree_algorithms::insert_equal_upper_bound(h, new_node, comp);
      rebalance_after_insertion(h, new_node);
      return new_node;
   }

   //! <b>Requires</b>: "h" must be the header node of a tree.
   //!   NodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares two node_ptrs.
   //!
   //! <b>Effects</b>: Inserts new_node into the tree before the lower bound
   //!   according to "comp".
   //! 
   //! <b>Complexity</b>: Average complexity for insert element is at
   //!   most logarithmic.
   //! 
   //! <b>Throws</b>: If "comp" throws.
   template<class NodePtrCompare>
   static node_ptr insert_equal_lower_bound
      (node_ptr h, node_ptr new_node, NodePtrCompare comp)
   {
      tree_algorithms::insert_equal_lower_bound(h, new_node, comp);
      rebalance_after_insertion(h, new_node);
      return new_node;
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   NodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares two node_ptrs. "hint" is node from
   //!   the "header"'s tree.
   //!   
   //! <b>Effects</b>: Inserts new_node into the tree, using "hint" as a hint to
   //!   where it will be inserted. If "hint" is the upper_bound
   //!   the insertion takes constant time (two comparisons in the worst case).
   //!
   //! <b>Complexity</b>: Logarithmic in general, but it is amortized
   //!   constant time if new_node is inserted immediately before "hint".
   //! 
   //! <b>Throws</b>: If "comp" throws.
   template<class NodePtrCompare>
   static node_ptr insert_equal
      (node_ptr header, node_ptr hint, node_ptr new_node, NodePtrCompare comp)
   {
      tree_algorithms::insert_equal(header, hint, new_node, comp);
      rebalance_after_insertion(header, new_node);
      return new_node;
   }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares KeyType with a node_ptr.
   //! 
   //! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
   //!   tree according to "comp" and obtains the needed information to realize
   //!   a constant-time node insertion if there is no equivalent node.
   //!
   //! <b>Returns</b>: If there is an equivalent value
   //!   returns a pair containing a node_ptr to the already present node
   //!   and false. If there is not equivalent key can be inserted returns true
   //!   in the returned pair's boolean and fills "commit_data" that is meant to
   //!   be used with the "insert_commit" function to achieve a constant-time
   //!   insertion function.
   //! 
   //! <b>Complexity</b>: Average complexity is at most logarithmic.
   //!
   //! <b>Throws</b>: If "comp" throws.
   //! 
   //! <b>Notes</b>: This function is used to improve performance when constructing
   //!   a node is expensive and the user does not want to have two equivalent nodes
   //!   in the tree: if there is an equivalent value
   //!   the constructed object must be discarded. Many times, the part of the
   //!   node that is used to impose the order is much cheaper to construct
   //!   than the node and this function offers the possibility to use that part
   //!   to check if the insertion will be successful.
   //!
   //!   If the check is successful, the user can construct the node and use
   //!   "insert_commit" to insert the node in constant-time. This gives a total
   //!   logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
   //!
   //!   "commit_data" remains valid for a subsequent "insert_unique_commit" only
   //!   if no more objects are inserted or erased from the set.
   template<class KeyType, class KeyNodePtrCompare>
   static std::pair<node_ptr, bool> insert_unique_check
      (const_node_ptr header,  const KeyType &key
      ,KeyNodePtrCompare comp, insert_commit_data &commit_data)
   {  return tree_algorithms::insert_unique_check(header, key, comp, commit_data);  }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   KeyNodePtrCompare is a function object that induces a strict weak
   //!   ordering compatible with the strict weak ordering used to create the
   //!   the tree. NodePtrCompare compares KeyType with a node_ptr.
   //!   "hint" is node from the "header"'s tree.
   //! 
   //! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
   //!   tree according to "comp" using "hint" as a hint to where it should be
   //!   inserted and obtains the needed information to realize
   //!   a constant-time node insertion if there is no equivalent node. 
   //!   If "hint" is the upper_bound the function has constant time 
   //!   complexity (two comparisons in the worst case).
   //!
   //! <b>Returns</b>: If there is an equivalent value
   //!   returns a pair containing a node_ptr to the already present node
   //!   and false. If there is not equivalent key can be inserted returns true
   //!   in the returned pair's boolean and fills "commit_data" that is meant to
   //!   be used with the "insert_commit" function to achieve a constant-time
   //!   insertion function.
   //! 
   //! <b>Complexity</b>: Average complexity is at most logarithmic, but it is
   //!   amortized constant time if new_node should be inserted immediately before "hint".
   //!
   //! <b>Throws</b>: If "comp" throws.
   //! 
   //! <b>Notes</b>: This function is used to improve performance when constructing
   //!   a node is expensive and the user does not want to have two equivalent nodes
   //!   in the tree: if there is an equivalent value
   //!   the constructed object must be discarded. Many times, the part of the
   //!   node that is used to impose the order is much cheaper to construct
   //!   than the node and this function offers the possibility to use that part
   //!   to check if the insertion will be successful.
   //!
   //!   If the check is successful, the user can construct the node and use
   //!   "insert_commit" to insert the node in constant-time. This gives a total
   //!   logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
   //!
   //!   "commit_data" remains valid for a subsequent "insert_unique_commit" only
   //!   if no more objects are inserted or erased from the set.
   template<class KeyType, class KeyNodePtrCompare>
   static std::pair<node_ptr, bool> insert_unique_check
      (const_node_ptr header,  node_ptr hint, const KeyType &key
      ,KeyNodePtrCompare comp, insert_commit_data &commit_data)
   {  return tree_algorithms::insert_unique_check(header, hint, key, comp, commit_data);  }

   //! <b>Requires</b>: "header" must be the header node of a tree.
   //!   "commit_data" must have been obtained from a previous call to
   //!   "insert_unique_check". No objects should have been inserted or erased
   //!   from the set between the "insert_unique_check" that filled "commit_data"
   //!   and the call to "insert_commit". 
   //! 
   //! 
   //! <b>Effects</b>: Inserts new_node in the set using the information obtained
   //!   from the "commit_data" that a previous "insert_check" filled.
   //!
   //! <b>Complexity</b>: Constant time.
   //!
   //! <b>Throws</b>: Nothing.
   //! 
   //! <b>Notes</b>: This function has only sense if a "insert_unique_check" has been
   //!   previously executed to fill "commit_data". No value should be inserted or
   //!   erased between the "insert_check" and "insert_commit" calls.
   static void insert_unique_commit
      (node_ptr header, node_ptr new_value, const insert_commit_data &commit_data)
   {
      tree_algorithms::insert_unique_commit(header, new_value, commit_data);
      rebalance_after_insertion(header, new_value);
   }

   //! <b>Requires</b>: "n" must be a node inserted in a tree.
   //!
   //! <b>Effects</b>: Returns a pointer to the header node of the tree.
   //!
   //! <b>Complexity</b>: Logarithmic.
   //! 
   //! <b>Throws</b>: Nothing.
   static node_ptr get_header(node_ptr n)
   {  return tree_algorithms::get_header(n);   }

   /// @cond
   private:

   //! <b>Requires</b>: p is a node of a tree.
   //! 
   //! <b>Effects</b>: Returns true if p is the header of the tree.
   //! 
   //! <b>Complexity</b>: Constant.
   //! 
   //! <b>Throws</b>: Nothing.
   static bool is_header(const_node_ptr p)
   {  return NodeTraits::get_balance(p) == NodeTraits::zero() && tree_algorithms::is_header(p);  }

   static void rebalance_after_erasure(node_ptr header, node_ptr x, node_ptr x_parent)
   {
      node_ptr root = NodeTraits::get_parent(header);
      while (x != root) {
         const balance x_parent_balance = NodeTraits::get_balance(x_parent);
         if(x_parent_balance == NodeTraits::zero()){
            NodeTraits::set_balance(x_parent, 
               (x == NodeTraits::get_right(x_parent) ? NodeTraits::negative() : NodeTraits::positive()));
            break;       // the height didn't change, let's stop here
         }
         else if(x_parent_balance == NodeTraits::negative()){
            if (x == NodeTraits::get_left(x_parent)) {
               NodeTraits::set_balance(x_parent, NodeTraits::zero()); // balanced
               x = x_parent;
               x_parent = NodeTraits::get_parent(x_parent);
            }
            else {
               // x is right child
               // a is left child
               node_ptr a = NodeTraits::get_left(x_parent);
               BOOST_INTRUSIVE_INVARIANT_ASSERT(a);
               if (NodeTraits::get_balance(a) == NodeTraits::positive()) {
                  // a MUST have a right child
                  BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_right(a));
                  rotate_left_right(x_parent, root);
                  
                  x = NodeTraits::get_parent(x_parent);
                  x_parent = NodeTraits::get_parent(x);
               }
               else {
                  rotate_right(x_parent, root);
                  x = NodeTraits::get_parent(x_parent);
                  x_parent = NodeTraits::get_parent(x);

               }

               // if changed from negative to NodeTraits::positive(), no need to check above
               if (NodeTraits::get_balance(x) == NodeTraits::positive()){
                  break;
               }
            }
         }
         else if(x_parent_balance == NodeTraits::positive()){
            if (x == NodeTraits::get_right(x_parent)) {
               NodeTraits::set_balance(x_parent, NodeTraits::zero()); // balanced
               x = x_parent;
               x_parent = NodeTraits::get_parent(x_parent);
            }
            else {
               // x is left child
               // a is right child
               node_ptr a = NodeTraits::get_right(x_parent);
               BOOST_INTRUSIVE_INVARIANT_ASSERT(a);
               if (NodeTraits::get_balance(a) == NodeTraits::negative()) {
                  // a MUST have then a left child
                  BOOST_INTRUSIVE_INVARIANT_ASSERT(NodeTraits::get_left(a));
                  rotate_right_left(x_parent, root);

                  x = NodeTraits::get_parent(x_parent);
                  x_parent = NodeTraits::get_parent(x);
               }
               else {
                     rotate_left(x_parent, root);
                     x = NodeTraits::get_parent(x_parent);
                     x_parent = NodeTraits::get_parent(x);
               }
               // if changed from NodeTraits::positive() to negative, no need to check above
               if (NodeTraits::get_balance(x) == NodeTraits::negative()){
                  break;
               }
            }
         }
         else{
            BOOST_INTRUSIVE_INVARIANT_ASSERT(false);  // never reached
         }
      }
      NodeTraits::set_parent(header, root);
   }


   static void rebalance_after_insertion(node_ptr header, node_ptr x)
   {
      node_ptr root = NodeTraits::get_parent(header);
      NodeTraits::set_balance(x, NodeTraits::zero());

      // Rebalance.
      while (x != root){
         const balance x_parent_balance = NodeTraits::get_balance(NodeTraits::get_parent(x));

         if(x_parent_balance == NodeTraits::zero()){
            // if x is left, parent will have parent->bal_factor = negative
            // else, parent->bal_factor = NodeTraits::positive()
            NodeTraits::set_balance( NodeTraits::get_parent(x)
                                    , x == NodeTraits::get_left(NodeTraits::get_parent(x))
                                       ? NodeTraits::negative() : NodeTraits::positive()  );
            x = NodeTraits::get_parent(x);
         }
         else if(x_parent_balance == NodeTraits::positive()){
            // if x is a left child, parent->bal_factor = zero
            if (x == NodeTraits::get_left(NodeTraits::get_parent(x)))
               NodeTraits::set_balance(NodeTraits::get_parent(x), NodeTraits::zero());
            else{        // x is a right child, needs rebalancing
               if (NodeTraits::get_balance(x) == NodeTraits::negative())
                  rotate_right_left(NodeTraits::get_parent(x), root);
               else
                  rotate_left(NodeTraits::get_parent(x), root);
            }
            break;
         }
         else if(x_parent_balance == NodeTraits::negative()){
            // if x is a left child, needs rebalancing
            if (x == NodeTraits::get_left(NodeTraits::get_parent(x))) {
               if (NodeTraits::get_balance(x) == NodeTraits::positive())
                  rotate_left_right(NodeTraits::get_parent(x), root);
               else
                  rotate_right(NodeTraits::get_parent(x), root);
            }
            else
               NodeTraits::set_balance(NodeTraits::get_parent(x), NodeTraits::zero());
            break;
         }
         else{
            BOOST_INTRUSIVE_INVARIANT_ASSERT(false);  // never reached
         }
      }
      NodeTraits::set_parent(header, root);
   }

   static void rotate_left_right(node_ptr a, node_ptr &root)
   {
      //             |                               |         //
      //             a(-2)                           c         //
      //            / \                             / \        //
      //           /   \        ==>                /   \       //
      //      (pos)b    [g]                       b     a      //
      //          / \                            / \   / \     //
      //        [d]  c                         [d]  e f  [g]   //
      //           / \                                         //
      //          e   f                                        //
      node_ptr b = NodeTraits::get_left(a), c = NodeTraits::get_right(b);

      // switch
      NodeTraits::set_left(a, NodeTraits::get_right(c));
      NodeTraits::set_right(b, NodeTraits::get_left(c));

      NodeTraits::set_right(c, a);
      NodeTraits::set_left(c, b);

      // set the parents
      NodeTraits::set_parent(c, NodeTraits::get_parent(a));
      NodeTraits::set_parent(a, c);
      NodeTraits::set_parent(b, c);

      if (NodeTraits::get_left(a))   // do we have f?
         NodeTraits::set_parent(NodeTraits::get_left(a), a);
      if (NodeTraits::get_right(b))    // do we have e?
         NodeTraits::set_parent(NodeTraits::get_right(b), b);

      if (a==root)   root = c;
      else    // a had a parent, his child is now c
         if (a == NodeTraits::get_left(NodeTraits::get_parent(c)))
            NodeTraits::set_left(NodeTraits::get_parent(c), c);
         else
            NodeTraits::set_right(NodeTraits::get_parent(c), c);

      // balancing...
      const balance c_balance = NodeTraits::get_balance(c);
      if(c_balance == NodeTraits::negative()){
         NodeTraits::set_balance(a, NodeTraits::positive());
         NodeTraits::set_balance(b, NodeTraits::zero());
      }
      else if(c_balance == NodeTraits::zero()){
         NodeTraits::set_balance(a, NodeTraits::zero());
         NodeTraits::set_balance(b, NodeTraits::zero());
      }
      else if(c_balance == NodeTraits::positive()){
         NodeTraits::set_balance(a, NodeTraits::zero());
         NodeTraits::set_balance(b, NodeTraits::negative());
      }
      else{
         BOOST_INTRUSIVE_INVARIANT_ASSERT(false); // never reached
      }
      NodeTraits::set_balance(c, NodeTraits::zero());
   }

   static void rotate_right_left(node_ptr a, node_ptr &root)
   {
      //              |                               |           //
      //              a(pos)                          c           //
      //             / \                             / \          //
      //            /   \                           /   \         //
      //          [d]   b(neg)         ==>         a     b        //
      //               / \                        / \   / \       //
      //              c  [g]                    [d] e  f  [g]     //
      //             / \                                          //
      //            e   f                                         //
      node_ptr b = NodeTraits::get_right(a), c = NodeTraits::get_left(b);

      // switch
      NodeTraits::set_right(a, NodeTraits::get_left(c));
      NodeTraits::set_left(b, NodeTraits::get_right(c));

      NodeTraits::set_left(c, a);
      NodeTraits::set_right(c, b);

      // set the parents
      NodeTraits::set_parent(c, NodeTraits::get_parent(a));
      NodeTraits::set_parent(a, c);
      NodeTraits::set_parent(b, c);

      if (NodeTraits::get_right(a))   // do we have e?
         NodeTraits::set_parent(NodeTraits::get_right(a), a);
      if (NodeTraits::get_left(b))    // do we have f?
         NodeTraits::set_parent(NodeTraits::get_left(b), b);

      if (a==root)   root = c;
      else    // a had a parent, his child is now c
         if (a == NodeTraits::get_left(NodeTraits::get_parent(c)))
            NodeTraits::set_left(NodeTraits::get_parent(c), c);
         else
            NodeTraits::set_right(NodeTraits::get_parent(c), c);

      // balancing...
      const balance c_balance = NodeTraits::get_balance(c);
      if(c_balance == NodeTraits::negative()){
         NodeTraits::set_balance(a, NodeTraits::zero());
         NodeTraits::set_balance(b, NodeTraits::positive());
      }
      else if(c_balance == NodeTraits::zero()){
         NodeTraits::set_balance(a, NodeTraits::zero());
         NodeTraits::set_balance(b, NodeTraits::zero());
      }
      else if(c_balance == NodeTraits::positive()){
         NodeTraits::set_balance(a, NodeTraits::negative());
         NodeTraits::set_balance(b, NodeTraits::zero());
      }
      else{
         BOOST_INTRUSIVE_INVARIANT_ASSERT(false);
      }
      NodeTraits::set_balance(c, NodeTraits::zero());
   }

   static void rotate_left(node_ptr x, node_ptr & root)
   {
      //            |                          |         //
      //            x(2)                       y(0)      //
      //           / \          ==>           / \        //
      //        n[a]  y(1)n+2          n+1(0)x  [c]n+1   //
      //             / \                    / \          //
      //          n[b] [c]n+1            n[a] [b]n       //
      node_ptr y = NodeTraits::get_right(x);

      // switch
      NodeTraits::set_right(x, NodeTraits::get_left(y));
      NodeTraits::set_left(y, x);

      // rearrange parents
      NodeTraits::set_parent(y, NodeTraits::get_parent(x));
      NodeTraits::set_parent(x, y);

      // do we have [b]?
      if (NodeTraits::get_right(x))
         NodeTraits::set_parent(NodeTraits::get_right(x), x);

      if (x == root)
         root = y;
      else
         // need to reparent y
         if (NodeTraits::get_left(NodeTraits::get_parent(y)) == x)
            NodeTraits::set_left(NodeTraits::get_parent(y), y);
         else
            NodeTraits::set_right(NodeTraits::get_parent(y), y);

      // reset the balancing factor
      if (NodeTraits::get_balance(y) == NodeTraits::positive()) {
         NodeTraits::set_balance(x, NodeTraits::zero());
         NodeTraits::set_balance(y, NodeTraits::zero());
      }
      else {        // this doesn't happen during insertions
         NodeTraits::set_balance(x, NodeTraits::positive());
         NodeTraits::set_balance(y, NodeTraits::negative());
      }
   }

   static void rotate_right(node_ptr x, node_ptr &root)
   {
      node_ptr y = NodeTraits::get_left(x);

      // switch
      NodeTraits::set_left(x, NodeTraits::get_right(y));
      NodeTraits::set_right(y, x);

      // rearrange parents
      NodeTraits::set_parent(y, NodeTraits::get_parent(x));
      NodeTraits::set_parent(x, y);

      // do we have [b]?
      if (NodeTraits::get_left(x))
         NodeTraits::set_parent(NodeTraits::get_left(x), x);

      if (x == root)
         root = y;
      else
         // need to reparent y
         if (NodeTraits::get_left(NodeTraits::get_parent(y)) == x)
            NodeTraits::set_left(NodeTraits::get_parent(y), y);
         else
            NodeTraits::set_right(NodeTraits::get_parent(y), y);

      // reset the balancing factor
      if (NodeTraits::get_balance(y) == NodeTraits::negative()) {
         NodeTraits::set_balance(x, NodeTraits::zero());
         NodeTraits::set_balance(y, NodeTraits::zero());
      }
      else {        // this doesn't happen during insertions
         NodeTraits::set_balance(x, NodeTraits::negative());
         NodeTraits::set_balance(y, NodeTraits::positive());
      }
   }

   /// @endcond
};

} //namespace intrusive 
} //namespace boost 

#include <boost/intrusive/detail/config_end.hpp>

#endif //BOOST_INTRUSIVE_AVLTREE_ALGORITHMS_HPP