boost/graph/subgraph.hpp
//=======================================================================
// Copyright 2001 University of Notre Dame.
// Authors: Jeremy G. Siek and Lie-Quan Lee
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef BOOST_SUBGRAPH_HPP
#define BOOST_SUBGRAPH_HPP
// UNDER CONSTRUCTION
#include <boost/config.hpp>
#include <list>
#include <vector>
#include <map>
#include <cassert>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include <boost/iterator/indirect_iterator.hpp>
#include <boost/static_assert.hpp>
#include <boost/type_traits/is_same.hpp>
namespace boost {
struct subgraph_tag { };
// Invariants of an induced subgraph:
// - If vertex u is in subgraph g, then u must be in g.parent().
// - If edge e is in subgraph g, then e must be in g.parent().
// - If edge e=(u,v) is in the root graph, then edge e
// is also in any subgraph that contains both vertex u and v.
// The Graph template parameter must have a vertex_index
// and edge_index internal property. It is assumed that
// the vertex indices are assigned automatically by the
// graph during a call to add_vertex(). It is not
// assumed that the edge vertices are assigned automatically,
// they are explicitly assigned here.
template <typename Graph>
class subgraph {
typedef graph_traits<Graph> Traits;
typedef std::list<subgraph<Graph>*> ChildrenList;
public:
// Graph requirements
typedef typename Traits::vertex_descriptor vertex_descriptor;
typedef typename Traits::edge_descriptor edge_descriptor;
typedef typename Traits::directed_category directed_category;
typedef typename Traits::edge_parallel_category edge_parallel_category;
typedef typename Traits::traversal_category traversal_category;
static vertex_descriptor null_vertex()
{
return Traits::null_vertex();
}
// IncidenceGraph requirements
typedef typename Traits::out_edge_iterator out_edge_iterator;
typedef typename Traits::degree_size_type degree_size_type;
// AdjacencyGraph requirements
typedef typename Traits::adjacency_iterator adjacency_iterator;
// VertexListGraph requirements
typedef typename Traits::vertex_iterator vertex_iterator;
typedef typename Traits::vertices_size_type vertices_size_type;
// EdgeListGraph requirements
typedef typename Traits::edge_iterator edge_iterator;
typedef typename Traits::edges_size_type edges_size_type;
typedef typename Traits::in_edge_iterator in_edge_iterator;
typedef typename Graph::edge_property_type edge_property_type;
typedef typename Graph::vertex_property_type vertex_property_type;
typedef subgraph_tag graph_tag;
typedef Graph graph_type;
typedef typename Graph::graph_property_type graph_property_type;
// Constructors
// Create the main graph, the root of the subgraph tree
subgraph()
: m_parent(0), m_edge_counter(0)
{ }
subgraph(const graph_property_type& p)
: m_graph(p), m_parent(0), m_edge_counter(0)
{ }
subgraph(vertices_size_type n,
const graph_property_type& p = graph_property_type())
: m_graph(n, p), m_parent(0), m_edge_counter(0), m_global_vertex(n)
{
typename Graph::vertex_iterator v, v_end;
vertices_size_type i = 0;
for (tie(v, v_end) = vertices(m_graph); v != v_end; ++v)
m_global_vertex[i++] = *v;
}
// copy constructor
subgraph(const subgraph& x)
: m_graph(x.m_graph), m_parent(x.m_parent),
m_edge_counter(x.m_edge_counter),
m_global_vertex(x.m_global_vertex),
m_global_edge(x.m_global_edge)
{
// Do a deep copy
for (typename ChildrenList::const_iterator i = x.m_children.begin();
i != x.m_children.end(); ++i)
m_children.push_back(new subgraph<Graph>( **i ));
}
~subgraph() {
for (typename ChildrenList::iterator i = m_children.begin();
i != m_children.end(); ++i)
delete *i;
}
// Create a subgraph
subgraph<Graph>& create_subgraph() {
m_children.push_back(new subgraph<Graph>());
m_children.back()->m_parent = this;
return *m_children.back();
}
// Create a subgraph with the specified vertex set.
template <typename VertexIterator>
subgraph<Graph>& create_subgraph(VertexIterator first,
VertexIterator last)
{
m_children.push_back(new subgraph<Graph>());
m_children.back()->m_parent = this;
for (; first != last; ++first)
add_vertex(*first, *m_children.back());
return *m_children.back();
}
// local <-> global descriptor conversion functions
vertex_descriptor local_to_global(vertex_descriptor u_local) const
{
return m_global_vertex[u_local];
}
vertex_descriptor global_to_local(vertex_descriptor u_global) const
{
vertex_descriptor u_local; bool in_subgraph;
tie(u_local, in_subgraph) = this->find_vertex(u_global);
assert(in_subgraph == true);
return u_local;
}
edge_descriptor local_to_global(edge_descriptor e_local) const
{
return m_global_edge[get(get(edge_index, m_graph), e_local)];
}
edge_descriptor global_to_local(edge_descriptor e_global) const
{
return
(*m_local_edge.find(get(get(edge_index, root().m_graph), e_global))).second;
}
// Is vertex u (of the root graph) contained in this subgraph?
// If so, return the matching local vertex.
std::pair<vertex_descriptor, bool>
find_vertex(vertex_descriptor u_global) const
{
typename std::map<vertex_descriptor, vertex_descriptor>::const_iterator
i = m_local_vertex.find(u_global);
bool valid = i != m_local_vertex.end();
return std::make_pair((valid ? (*i).second : null_vertex()), valid);
}
// Return the parent graph.
subgraph& parent() { return *m_parent; }
const subgraph& parent() const { return *m_parent; }
bool is_root() const { return m_parent == 0; }
// Return the root graph of the subgraph tree.
subgraph& root() {
if (this->is_root())
return *this;
else
return m_parent->root();
}
const subgraph& root() const {
if (this->is_root())
return *this;
else
return m_parent->root();
}
// Return the children subgraphs of this graph/subgraph.
// Use a list of pointers because the VC++ std::list doesn't like
// storing incomplete type.
typedef indirect_iterator<
typename ChildrenList::const_iterator
, subgraph<Graph>
, std::bidirectional_iterator_tag
>
children_iterator;
typedef indirect_iterator<
typename ChildrenList::const_iterator
, subgraph<Graph> const
, std::bidirectional_iterator_tag
>
const_children_iterator;
std::pair<const_children_iterator, const_children_iterator>
children() const
{
return std::make_pair(const_children_iterator(m_children.begin()),
const_children_iterator(m_children.end()));
}
std::pair<children_iterator, children_iterator>
children()
{
return std::make_pair(children_iterator(m_children.begin()),
children_iterator(m_children.end()));
}
std::size_t num_children() const { return m_children.size(); }
#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
// Bundled properties support
template<typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type&
operator[](Descriptor x)
{
if (m_parent == 0) return m_graph[x];
else return root().m_graph[local_to_global(x)];
}
template<typename Descriptor>
typename graph::detail::bundled_result<Graph, Descriptor>::type const&
operator[](Descriptor x) const
{
if (m_parent == 0) return m_graph[x];
else return root().m_graph[local_to_global(x)];
}
#endif // BOOST_GRAPH_NO_BUNDLED_PROPERTIES
// private:
typedef typename property_map<Graph, edge_index_t>::type EdgeIndexMap;
typedef typename property_traits<EdgeIndexMap>::value_type edge_index_type;
BOOST_STATIC_ASSERT((!is_same<edge_index_type,
boost::detail::error_property_not_found>::value));
Graph m_graph;
subgraph<Graph>* m_parent;
edge_index_type m_edge_counter; // for generating unique edge indices
ChildrenList m_children;
std::vector<vertex_descriptor> m_global_vertex; // local -> global
std::map<vertex_descriptor, vertex_descriptor> m_local_vertex; // global -> local
std::vector<edge_descriptor> m_global_edge; // local -> global
std::map<edge_index_type, edge_descriptor> m_local_edge; // global -> local
edge_descriptor
local_add_edge(vertex_descriptor u_local, vertex_descriptor v_local,
edge_descriptor e_global)
{
edge_descriptor e_local;
bool inserted;
tie(e_local, inserted) = add_edge(u_local, v_local, m_graph);
put(edge_index, m_graph, e_local, m_edge_counter++);
m_global_edge.push_back(e_global);
m_local_edge[get(get(edge_index, this->root()), e_global)] = e_local;
return e_local;
}
};
#ifndef BOOST_GRAPH_NO_BUNDLED_PROPERTIES
template<typename Graph>
struct vertex_bundle_type<subgraph<Graph> > : vertex_bundle_type<Graph> { };
template<typename Graph>
struct edge_bundle_type<subgraph<Graph> > : edge_bundle_type<Graph> { };
#endif // BOOST_GRAPH_NO_BUNDLED_PROPERTIES
//===========================================================================
// Functions special to the Subgraph Class
template <typename G>
typename subgraph<G>::vertex_descriptor
add_vertex(typename subgraph<G>::vertex_descriptor u_global,
subgraph<G>& g)
{
assert(!g.is_root());
typename subgraph<G>::vertex_descriptor u_local, v_global, uu_global;
typename subgraph<G>::edge_descriptor e_global;
u_local = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
g.m_local_vertex[u_global] = u_local;
subgraph<G>& r = g.root();
// remember edge global and local maps
{
typename subgraph<G>::out_edge_iterator ei, ei_end;
for (tie(ei, ei_end) = out_edges(u_global, r);
ei != ei_end; ++ei) {
e_global = *ei;
v_global = target(e_global, r);
if (g.find_vertex(v_global).second == true)
g.local_add_edge(u_local, g.global_to_local(v_global), e_global);
}
}
if (is_directed(g)) { // not necessary for undirected graph
typename subgraph<G>::vertex_iterator vi, vi_end;
typename subgraph<G>::out_edge_iterator ei, ei_end;
for (tie(vi, vi_end) = vertices(r); vi != vi_end; ++vi) {
v_global = *vi;
if (g.find_vertex(v_global).second)
for (tie(ei, ei_end) = out_edges(*vi, r); ei != ei_end; ++ei) {
e_global = *ei;
uu_global = target(e_global, r);
if (uu_global == u_global && g.find_vertex(v_global).second)
g.local_add_edge(g.global_to_local(v_global), u_local, e_global);
}
}
}
return u_local;
}
//===========================================================================
// Functions required by the IncidenceGraph concept
template <typename G>
std::pair<typename graph_traits<G>::out_edge_iterator,
typename graph_traits<G>::out_edge_iterator>
out_edges(typename graph_traits<G>::vertex_descriptor u_local,
const subgraph<G>& g)
{ return out_edges(u_local, g.m_graph); }
template <typename G>
typename graph_traits<G>::degree_size_type
out_degree(typename graph_traits<G>::vertex_descriptor u_local,
const subgraph<G>& g)
{ return out_degree(u_local, g.m_graph); }
template <typename G>
typename graph_traits<G>::vertex_descriptor
source(typename graph_traits<G>::edge_descriptor e_local,
const subgraph<G>& g)
{ return source(e_local, g.m_graph); }
template <typename G>
typename graph_traits<G>::vertex_descriptor
target(typename graph_traits<G>::edge_descriptor e_local,
const subgraph<G>& g)
{ return target(e_local, g.m_graph); }
//===========================================================================
// Functions required by the BidirectionalGraph concept
template <typename G>
std::pair<typename graph_traits<G>::in_edge_iterator,
typename graph_traits<G>::in_edge_iterator>
in_edges(typename graph_traits<G>::vertex_descriptor u_local,
const subgraph<G>& g)
{ return in_edges(u_local, g.m_graph); }
template <typename G>
typename graph_traits<G>::degree_size_type
in_degree(typename graph_traits<G>::vertex_descriptor u_local,
const subgraph<G>& g)
{ return in_degree(u_local, g.m_graph); }
template <typename G>
typename graph_traits<G>::degree_size_type
degree(typename graph_traits<G>::vertex_descriptor u_local,
const subgraph<G>& g)
{ return degree(u_local, g.m_graph); }
//===========================================================================
// Functions required by the AdjacencyGraph concept
template <typename G>
std::pair<typename subgraph<G>::adjacency_iterator,
typename subgraph<G>::adjacency_iterator>
adjacent_vertices(typename subgraph<G>::vertex_descriptor u_local,
const subgraph<G>& g)
{ return adjacent_vertices(u_local, g.m_graph); }
//===========================================================================
// Functions required by the VertexListGraph concept
template <typename G>
std::pair<typename subgraph<G>::vertex_iterator,
typename subgraph<G>::vertex_iterator>
vertices(const subgraph<G>& g)
{ return vertices(g.m_graph); }
template <typename G>
typename subgraph<G>::vertices_size_type
num_vertices(const subgraph<G>& g)
{ return num_vertices(g.m_graph); }
//===========================================================================
// Functions required by the EdgeListGraph concept
template <typename G>
std::pair<typename subgraph<G>::edge_iterator,
typename subgraph<G>::edge_iterator>
edges(const subgraph<G>& g)
{ return edges(g.m_graph); }
template <typename G>
typename subgraph<G>::edges_size_type
num_edges(const subgraph<G>& g)
{ return num_edges(g.m_graph); }
//===========================================================================
// Functions required by the AdjacencyMatrix concept
template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
edge(typename subgraph<G>::vertex_descriptor u_local,
typename subgraph<G>::vertex_descriptor v_local,
const subgraph<G>& g)
{
return edge(u_local, v_local, g.m_graph);
}
//===========================================================================
// Functions required by the MutableGraph concept
namespace detail {
template <typename Vertex, typename Edge, typename Graph>
void add_edge_recur_down
(Vertex u_global, Vertex v_global, Edge e_global, subgraph<Graph>& g);
template <typename Vertex, typename Edge, typename Children, typename G>
void children_add_edge(Vertex u_global, Vertex v_global, Edge e_global,
Children& c, subgraph<G>* orig)
{
for (typename Children::iterator i = c.begin(); i != c.end(); ++i)
if ((*i)->find_vertex(u_global).second
&& (*i)->find_vertex(v_global).second)
add_edge_recur_down(u_global, v_global, e_global, **i, orig);
}
template <typename Vertex, typename Edge, typename Graph>
void add_edge_recur_down
(Vertex u_global, Vertex v_global, Edge e_global, subgraph<Graph>& g,
subgraph<Graph>* orig)
{
if (&g != orig ) {
// add local edge only if u_global and v_global are in subgraph g
Vertex u_local, v_local;
bool u_in_subgraph, v_in_subgraph;
tie(u_local, u_in_subgraph) = g.find_vertex(u_global);
tie(v_local, v_in_subgraph) = g.find_vertex(v_global);
if (u_in_subgraph && v_in_subgraph)
g.local_add_edge(u_local, v_local, e_global);
}
children_add_edge(u_global, v_global, e_global, g.m_children, orig);
}
template <typename Vertex, typename Graph>
std::pair<typename subgraph<Graph>::edge_descriptor, bool>
add_edge_recur_up(Vertex u_global, Vertex v_global,
const typename Graph::edge_property_type& ep,
subgraph<Graph>& g, subgraph<Graph>* orig)
{
if (g.is_root()) {
typename subgraph<Graph>::edge_descriptor e_global;
bool inserted;
tie(e_global, inserted) = add_edge(u_global, v_global, ep, g.m_graph);
put(edge_index, g.m_graph, e_global, g.m_edge_counter++);
g.m_global_edge.push_back(e_global);
children_add_edge(u_global, v_global, e_global, g.m_children, orig);
return std::make_pair(e_global, inserted);
} else
return add_edge_recur_up(u_global, v_global, ep, *g.m_parent, orig);
}
} // namespace detail
// Add an edge to the subgraph g, specified by the local vertex
// descriptors u and v. In addition, the edge will be added to any
// other subgraphs which contain vertex descriptors u and v.
template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
add_edge(typename subgraph<G>::vertex_descriptor u_local,
typename subgraph<G>::vertex_descriptor v_local,
const typename G::edge_property_type& ep,
subgraph<G>& g)
{
if (g.is_root()) // u_local and v_local are really global
return detail::add_edge_recur_up(u_local, v_local, ep, g, &g);
else {
typename subgraph<G>::edge_descriptor e_local, e_global;
bool inserted;
tie(e_global, inserted) = detail::add_edge_recur_up
(g.local_to_global(u_local), g.local_to_global(v_local), ep, g, &g);
e_local = g.local_add_edge(u_local, v_local, e_global);
return std::make_pair(e_local, inserted);
}
}
template <typename G>
std::pair<typename subgraph<G>::edge_descriptor, bool>
add_edge(typename subgraph<G>::vertex_descriptor u,
typename subgraph<G>::vertex_descriptor v,
subgraph<G>& g)
{
typename G::edge_property_type ep;
return add_edge(u, v, ep, g);
}
namespace detail {
//-------------------------------------------------------------------------
// implementation of remove_edge(u,v,g)
template <typename Vertex, typename Graph>
void remove_edge_recur_down(Vertex u_global, Vertex v_global,
subgraph<Graph>& g);
template <typename Vertex, typename Children>
void children_remove_edge(Vertex u_global, Vertex v_global,
Children& c)
{
for (typename Children::iterator i = c.begin(); i != c.end(); ++i)
if ((*i)->find_vertex(u_global).second
&& (*i)->find_vertex(v_global).second)
remove_edge_recur_down(u_global, v_global, **i);
}
template <typename Vertex, typename Graph>
void remove_edge_recur_down(Vertex u_global, Vertex v_global,
subgraph<Graph>& g)
{
Vertex u_local, v_local;
u_local = g.m_local_vertex[u_global];
v_local = g.m_local_vertex[v_global];
remove_edge(u_local, v_local, g.m_graph);
children_remove_edge(u_global, v_global, g.m_children);
}
template <typename Vertex, typename Graph>
void remove_edge_recur_up(Vertex u_global, Vertex v_global,
subgraph<Graph>& g)
{
if (g.is_root()) {
remove_edge(u_global, v_global, g.m_graph);
children_remove_edge(u_global, v_global, g.m_children);
} else
remove_edge_recur_up(u_global, v_global, *g.m_parent);
}
//-------------------------------------------------------------------------
// implementation of remove_edge(e,g)
template <typename Edge, typename Graph>
void remove_edge_recur_down(Edge e_global, subgraph<Graph>& g);
template <typename Edge, typename Children>
void children_remove_edge(Edge e_global, Children& c)
{
for (typename Children::iterator i = c.begin(); i != c.end(); ++i)
if ((*i)->find_vertex(source(e_global, **i)).second
&& (*i)->find_vertex(target(e_global, **i)).second)
remove_edge_recur_down(source(e_global, **i),
target(e_global, **i), **i);
}
template <typename Edge, typename Graph>
void remove_edge_recur_down(Edge e_global, subgraph<Graph>& g)
{
remove_edge(g.global_to_local(e_global), g.m_graph);
children_remove_edge(e_global, g.m_children);
}
template <typename Edge, typename Graph>
void remove_edge_recur_up(Edge e_global, subgraph<Graph>& g)
{
if (g.is_root()) {
remove_edge(e_global, g.m_graph);
children_remove_edge(e_global, g.m_children);
} else
remove_edge_recur_up(e_global, *g.m_parent);
}
} // namespace detail
template <typename G>
void
remove_edge(typename subgraph<G>::vertex_descriptor u_local,
typename subgraph<G>::vertex_descriptor v_local,
subgraph<G>& g)
{
if (g.is_root())
detail::remove_edge_recur_up(u_local, v_local, g);
else
detail::remove_edge_recur_up(g.local_to_global(u_local),
g.local_to_global(v_local), g);
}
template <typename G>
void
remove_edge(typename subgraph<G>::edge_descriptor e_local,
subgraph<G>& g)
{
if (g.is_root())
detail::remove_edge_recur_up(e_local, g);
else
detail::remove_edge_recur_up(g.local_to_global(e_local), g);
}
template <typename Predicate, typename G>
void
remove_edge_if(Predicate p, subgraph<G>& g)
{
// This is wrong...
remove_edge_if(p, g.m_graph);
}
template <typename G>
void
clear_vertex(typename subgraph<G>::vertex_descriptor v_local,
subgraph<G>& g)
{
// this is wrong...
clear_vertex(v_local, g.m_graph);
}
namespace detail {
template <typename G>
typename subgraph<G>::vertex_descriptor
add_vertex_recur_up(subgraph<G>& g)
{
typename subgraph<G>::vertex_descriptor u_local, u_global;
if (g.is_root()) {
u_global = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
} else {
u_global = add_vertex_recur_up(*g.m_parent);
u_local = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
g.m_local_vertex[u_global] = u_local;
}
return u_global;
}
} // namespace detail
template <typename G>
typename subgraph<G>::vertex_descriptor
add_vertex(subgraph<G>& g)
{
typename subgraph<G>::vertex_descriptor u_local, u_global;
if (g.is_root()) {
u_global = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
u_local = u_global;
} else {
u_global = detail::add_vertex_recur_up(g.parent());
u_local = add_vertex(g.m_graph);
g.m_global_vertex.push_back(u_global);
g.m_local_vertex[u_global] = u_local;
}
return u_local;
}
template <typename G>
void remove_vertex(typename subgraph<G>::vertex_descriptor u,
subgraph<G>& g)
{
// UNDER CONSTRUCTION
assert(false);
}
//===========================================================================
// Functions required by the PropertyGraph concept
template <typename GraphPtr, typename PropertyMap, typename Tag>
class subgraph_global_property_map
: public put_get_helper<
typename property_traits<PropertyMap>::reference,
subgraph_global_property_map<GraphPtr, PropertyMap, Tag> >
{
typedef property_traits<PropertyMap> Traits;
public:
typedef typename Traits::category category;
typedef typename Traits::value_type value_type;
typedef typename Traits::key_type key_type;
typedef typename Traits::reference reference;
subgraph_global_property_map() { }
subgraph_global_property_map(GraphPtr g)
: m_g(g) { }
inline reference operator[](key_type e_local) const {
PropertyMap pmap = get(Tag(), m_g->root().m_graph);
if (m_g->m_parent == 0)
return pmap[e_local];
else
return pmap[m_g->local_to_global(e_local)];
}
GraphPtr m_g;
};
template <typename GraphPtr, typename PropertyMap, typename Tag>
class subgraph_local_property_map
: public put_get_helper<
typename property_traits<PropertyMap>::reference,
subgraph_local_property_map<GraphPtr, PropertyMap, Tag> >
{
typedef property_traits<PropertyMap> Traits;
public:
typedef typename Traits::category category;
typedef typename Traits::value_type value_type;
typedef typename Traits::key_type key_type;
typedef typename Traits::reference reference;
subgraph_local_property_map() { }
subgraph_local_property_map(GraphPtr g)
: m_g(g) { }
inline reference operator[](key_type e_local) const {
PropertyMap pmap = get(Tag(), *m_g);
return pmap[e_local];
}
GraphPtr m_g;
};
namespace detail {
struct subgraph_any_pmap {
template <class Tag, class SubGraph, class Property>
class bind_ {
typedef typename SubGraph::graph_type Graph;
typedef SubGraph* SubGraphPtr;
typedef const SubGraph* const_SubGraphPtr;
typedef typename property_map<Graph, Tag>::type PMap;
typedef typename property_map<Graph, Tag>::const_type const_PMap;
public:
typedef subgraph_global_property_map<SubGraphPtr, PMap, Tag> type;
typedef subgraph_global_property_map<const_SubGraphPtr, const_PMap, Tag>
const_type;
};
};
struct subgraph_id_pmap {
template <class Tag, class SubGraph, class Property>
struct bind_ {
typedef typename SubGraph::graph_type Graph;
typedef SubGraph* SubGraphPtr;
typedef const SubGraph* const_SubGraphPtr;
typedef typename property_map<Graph, Tag>::type PMap;
typedef typename property_map<Graph, Tag>::const_type const_PMap;
public:
typedef subgraph_local_property_map<SubGraphPtr, PMap, Tag> type;
typedef subgraph_local_property_map<const_SubGraphPtr, const_PMap, Tag>
const_type;
};
};
template <class Tag>
struct subgraph_choose_pmap_helper {
typedef subgraph_any_pmap type;
};
template <>
struct subgraph_choose_pmap_helper<vertex_index_t> {
typedef subgraph_id_pmap type;
};
template <class Tag, class Graph, class Property>
struct subgraph_choose_pmap {
typedef typename subgraph_choose_pmap_helper<Tag>::type Helper;
typedef typename Helper::template bind_<Tag, Graph, Property> Bind;
typedef typename Bind::type type;
typedef typename Bind::const_type const_type;
};
struct subgraph_property_generator {
template <class SubGraph, class Property, class Tag>
struct bind_ {
typedef subgraph_choose_pmap<Tag, SubGraph, Property> Choice;
typedef typename Choice::type type;
typedef typename Choice::const_type const_type;
};
};
} // namespace detail
template <>
struct vertex_property_selector<subgraph_tag> {
typedef detail::subgraph_property_generator type;
};
template <>
struct edge_property_selector<subgraph_tag> {
typedef detail::subgraph_property_generator type;
};
template <typename G, typename Property>
typename property_map< subgraph<G>, Property>::type
get(Property, subgraph<G>& g)
{
typedef typename property_map< subgraph<G>, Property>::type PMap;
return PMap(&g);
}
template <typename G, typename Property>
typename property_map< subgraph<G>, Property>::const_type
get(Property, const subgraph<G>& g)
{
typedef typename property_map< subgraph<G>, Property>::const_type PMap;
return PMap(&g);
}
template <typename G, typename Property, typename Key>
typename property_traits<
typename property_map< subgraph<G>, Property>::const_type
>::value_type
get(Property, const subgraph<G>& g, const Key& k)
{
typedef typename property_map< subgraph<G>, Property>::const_type PMap;
PMap pmap(&g);
return pmap[k];
}
template <typename G, typename Property, typename Key, typename Value>
void
put(Property, subgraph<G>& g, const Key& k, const Value& val)
{
typedef typename property_map< subgraph<G>, Property>::type PMap;
PMap pmap(&g);
pmap[k] = val;
}
template <typename G, typename Tag>
inline
typename graph_property<G, Tag>::type&
get_property(subgraph<G>& g, Tag tag) {
return get_property(g.m_graph, tag);
}
template <typename G, typename Tag>
inline
const typename graph_property<G, Tag>::type&
get_property(const subgraph<G>& g, Tag tag) {
return get_property(g.m_graph, tag);
}
//===========================================================================
// Miscellaneous Functions
template <typename G>
typename subgraph<G>::vertex_descriptor
vertex(typename subgraph<G>::vertices_size_type n, const subgraph<G>& g)
{
return vertex(n, g.m_graph);
}
} // namespace boost
#endif // BOOST_SUBGRAPH_HPP