boost/intrusive/sgtree.hpp
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2007
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
//
// The option that yields to non-floating point 1/sqrt(2) alpha is taken
// from the scapegoat tree implementation of the PSPP library.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_SGTREE_HPP
#define BOOST_INTRUSIVE_SGTREE_HPP
#include <boost/intrusive/detail/config_begin.hpp>
#include <algorithm>
#include <cstddef>
#include <functional>
#include <iterator>
#include <utility>
#include <cmath>
#include <cstddef>
#include <boost/intrusive/detail/assert.hpp>
#include <boost/static_assert.hpp>
#include <boost/intrusive/intrusive_fwd.hpp>
#include <boost/intrusive/bs_set_hook.hpp>
#include <boost/intrusive/detail/tree_node.hpp>
#include <boost/intrusive/detail/ebo_functor_holder.hpp>
#include <boost/intrusive/detail/pointer_to_other.hpp>
#include <boost/intrusive/options.hpp>
#include <boost/intrusive/sgtree_algorithms.hpp>
#include <boost/intrusive/link_mode.hpp>
namespace boost {
namespace intrusive {
/// @cond
namespace detail{
//! Returns floor(log(n)/log(sqrt(2))) -> floor(2*log2(n))
//! Undefined if N is 0.
//!
//! This function does not use float point operations.
inline std::size_t calculate_h_sqrt2 (std::size_t n)
{
std::size_t f_log2 = detail::floor_log2(n);
return (2*f_log2) + (n >= detail::sqrt2_pow_2xplus1 (f_log2));
}
struct h_alpha_sqrt2_t
{
h_alpha_sqrt2_t(void){}
std::size_t operator()(std::size_t n) const
{ return calculate_h_sqrt2(n); }
};
struct alpha_0_75_by_max_size_t
{
alpha_0_75_by_max_size_t(void){}
std::size_t operator()(std::size_t max_tree_size) const
{
const std::size_t max_tree_size_limit = ((~std::size_t(0))/std::size_t(3));
return max_tree_size > max_tree_size_limit ? max_tree_size/4*3 : max_tree_size*3/4;
}
};
struct h_alpha_t
{
h_alpha_t(float inv_minus_logalpha)
: inv_minus_logalpha_(inv_minus_logalpha)
{}
std::size_t operator()(std::size_t n) const
{
//Returns floor(log1/alpha(n)) ->
// floor(log(n)/log(1/alpha)) ->
// floor(log(n)/(-log(alpha)))
//return static_cast<std::size_t>(std::log(float(n))*inv_minus_logalpha_);
return static_cast<std::size_t>(detail::fast_log2(float(n))*inv_minus_logalpha_);
}
private:
//Since the function will be repeatedly called
//precalculate constant data to avoid repeated
//calls to log and division.
//This will store 1/(-std::log(alpha_))
float inv_minus_logalpha_;
};
struct alpha_by_max_size_t
{
alpha_by_max_size_t(float alpha)
: alpha_(alpha)
{}
float operator()(std::size_t max_tree_size) const
{ return float(max_tree_size)*alpha_; }
private:
float alpha_;
float inv_minus_logalpha_;
};
template<bool Activate>
struct alpha_holder
{
typedef boost::intrusive::detail::h_alpha_t h_alpha_t;
typedef boost::intrusive::detail::alpha_by_max_size_t multiply_by_alpha_t;
alpha_holder()
{ set_alpha(0.7f); }
float get_alpha() const
{ return alpha_; }
void set_alpha(float alpha)
{
alpha_ = alpha;
inv_minus_logalpha_ = 1/(-detail::fast_log2(alpha));
}
h_alpha_t get_h_alpha_t() const
{ return h_alpha_t(inv_minus_logalpha_); }
multiply_by_alpha_t get_multiply_by_alpha_t() const
{ return multiply_by_alpha_t(alpha_); }
private:
float alpha_;
float inv_minus_logalpha_;
};
template<>
struct alpha_holder<false>
{
//This specialization uses alpha = 1/sqrt(2)
//without using floating point operations
//Downside: alpha CAN't be changed.
typedef boost::intrusive::detail::h_alpha_sqrt2_t h_alpha_t;
typedef boost::intrusive::detail::alpha_0_75_by_max_size_t multiply_by_alpha_t;
float get_alpha() const
{ return 0.70710677f; }
void set_alpha(float)
{ //alpha CAN't be changed.
assert(0);
}
h_alpha_t get_h_alpha_t() const
{ return h_alpha_t(); }
multiply_by_alpha_t get_multiply_by_alpha_t() const
{ return multiply_by_alpha_t(); }
};
} //namespace detail{
template <class ValueTraits, class Compare, class SizeType, bool FloatingPoint>
struct sg_setopt
{
typedef ValueTraits value_traits;
typedef Compare compare;
typedef SizeType size_type;
static const bool floating_point = FloatingPoint;
};
template <class T>
struct sg_set_defaults
: pack_options
< none
, base_hook
< typename detail::eval_if_c
< internal_default_bs_set_hook<T>::value
, get_default_bs_set_hook<T>
, detail::identity<none>
>::type
>
, floating_point<true>
, size_type<std::size_t>
, compare<std::less<T> >
>::type
{};
/// @endcond
//! The class template sgtree is an intrusive scapegoat tree container, that
//! is used to construct intrusive sg_set and sg_multiset containers.
//! The no-throw guarantee holds only, if the value_compare object
//! doesn't throw.
//!
//! The template parameter \c T is the type to be managed by the container.
//! The user can specify additional options and if no options are provided
//! default options are used.
//!
//! The container supports the following options:
//! \c base_hook<>/member_hook<>/value_traits<>,
//! \c floating_point<>, \c size_type<> and
//! \c compare<>.
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template<class Config>
#endif
class sgtree_impl
{
public:
typedef typename Config::value_traits value_traits;
/// @cond
static const bool external_value_traits =
detail::external_value_traits_is_true<value_traits>::value;
typedef typename detail::eval_if_c
< external_value_traits
, detail::eval_value_traits<value_traits>
, detail::identity<value_traits>
>::type real_value_traits;
/// @endcond
typedef typename real_value_traits::pointer pointer;
typedef typename real_value_traits::const_pointer const_pointer;
typedef typename std::iterator_traits<pointer>::value_type value_type;
typedef value_type key_type;
typedef typename std::iterator_traits<pointer>::reference reference;
typedef typename std::iterator_traits<const_pointer>::reference const_reference;
typedef typename std::iterator_traits<pointer>::difference_type difference_type;
typedef typename Config::size_type size_type;
typedef typename Config::compare value_compare;
typedef value_compare key_compare;
typedef tree_iterator<sgtree_impl, false> iterator;
typedef tree_iterator<sgtree_impl, true> const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef typename real_value_traits::node_traits node_traits;
typedef typename node_traits::node node;
typedef typename boost::pointer_to_other
<pointer, node>::type node_ptr;
typedef typename boost::pointer_to_other
<node_ptr, const node>::type const_node_ptr;
typedef sgtree_algorithms<node_traits> node_algorithms;
static const bool floating_point = Config::floating_point;
static const bool constant_time_size = true;
static const bool stateful_value_traits = detail::store_cont_ptr_on_it<sgtree_impl>::value;
/// @cond
private:
typedef detail::size_holder<true, size_type> size_traits;
typedef detail::alpha_holder<floating_point> alpha_traits;
typedef typename alpha_traits::h_alpha_t h_alpha_t;
typedef typename alpha_traits::multiply_by_alpha_t multiply_by_alpha_t;
//noncopyable
sgtree_impl (const sgtree_impl&);
sgtree_impl operator =(const sgtree_impl&);
enum { safemode_or_autounlink =
(int)real_value_traits::link_mode == (int)auto_unlink ||
(int)real_value_traits::link_mode == (int)safe_link };
BOOST_STATIC_ASSERT(((int)real_value_traits::link_mode != (int)auto_unlink));
//BOOST_STATIC_ASSERT((
// (int)real_value_traits::link_mode != (int)auto_unlink ||
// !floating_point
// ));
struct header_plus_alpha : public alpha_traits
{ node header_; };
struct node_plus_pred_t : public detail::ebo_functor_holder<value_compare>
{
node_plus_pred_t(const value_compare &comp)
: detail::ebo_functor_holder<value_compare>(comp)
{}
header_plus_alpha header_plus_alpha_;
size_traits size_traits_;
};
struct data_t : public sgtree_impl::value_traits
{
typedef typename sgtree_impl::value_traits value_traits;
data_t(const value_compare & comp, const value_traits &val_traits)
: value_traits(val_traits), node_plus_pred_(comp)
, max_tree_size_(0)
{}
node_plus_pred_t node_plus_pred_;
size_type max_tree_size_;
} data_;
float priv_alpha() const
{ return this->priv_alpha_traits().get_alpha(); }
void priv_alpha(float alpha)
{ return this->priv_alpha_traits().set_alpha(alpha); }
const value_compare &priv_comp() const
{ return data_.node_plus_pred_.get(); }
value_compare &priv_comp()
{ return data_.node_plus_pred_.get(); }
const node &priv_header() const
{ return data_.node_plus_pred_.header_plus_alpha_.header_; }
node &priv_header()
{ return data_.node_plus_pred_.header_plus_alpha_.header_; }
static node_ptr uncast(const_node_ptr ptr)
{ return node_ptr(const_cast<node*>(detail::get_pointer(ptr))); }
size_traits &priv_size_traits()
{ return data_.node_plus_pred_.size_traits_; }
const size_traits &priv_size_traits() const
{ return data_.node_plus_pred_.size_traits_; }
alpha_traits &priv_alpha_traits()
{ return data_.node_plus_pred_.header_plus_alpha_; }
const alpha_traits &priv_alpha_traits() const
{ return data_.node_plus_pred_.header_plus_alpha_; }
const real_value_traits &get_real_value_traits(detail::bool_<false>) const
{ return data_; }
const real_value_traits &get_real_value_traits(detail::bool_<true>) const
{ return data_.get_value_traits(*this); }
real_value_traits &get_real_value_traits(detail::bool_<false>)
{ return data_; }
real_value_traits &get_real_value_traits(detail::bool_<true>)
{ return data_.get_value_traits(*this); }
h_alpha_t get_h_alpha_func() const
{ return priv_alpha_traits().get_h_alpha_t(); }
multiply_by_alpha_t get_alpha_by_max_size_func() const
{ return priv_alpha_traits().get_multiply_by_alpha_t(); }
/// @endcond
public:
const real_value_traits &get_real_value_traits() const
{ return this->get_real_value_traits(detail::bool_<external_value_traits>()); }
real_value_traits &get_real_value_traits()
{ return this->get_real_value_traits(detail::bool_<external_value_traits>()); }
typedef typename node_algorithms::insert_commit_data insert_commit_data;
//! <b>Effects</b>: Constructs an empty tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing unless the copy constructor of the value_compare object throws.
sgtree_impl( value_compare cmp = value_compare()
, const value_traits &v_traits = value_traits())
: data_(cmp, v_traits)
{
node_algorithms::init_header(&priv_header());
this->priv_size_traits().set_size(size_type(0));
}
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue of type value_type.
//! cmp must be a comparison function that induces a strict weak ordering.
//!
//! <b>Effects</b>: Constructs an empty tree and inserts elements from
//! [b, e).
//!
//! <b>Complexity</b>: Linear in N if [b, e) is already sorted using
//! comp and otherwise N * log N, where N is the distance between first and last.
//!
//! <b>Throws</b>: Nothing unless the copy constructor of the value_compare object throws.
template<class Iterator>
sgtree_impl( bool unique, Iterator b, Iterator e
, value_compare cmp = value_compare()
, const value_traits &v_traits = value_traits())
: data_(cmp, v_traits)
{
node_algorithms::init_header(&priv_header());
this->priv_size_traits().set_size(size_type(0));
if(unique)
this->insert_unique(b, e);
else
this->insert_equal(b, e);
}
//! <b>Effects</b>: Detaches all elements from this. The objects in the set
//! are not deleted (i.e. no destructors are called), but the nodes according to
//! the value_traits template parameter are reinitialized and thus can be reused.
//!
//! <b>Complexity</b>: Linear to elements contained in *this.
//!
//! <b>Throws</b>: Nothing.
~sgtree_impl()
{ this->clear(); }
//! <b>Effects</b>: Returns an iterator pointing to the beginning of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
iterator begin()
{ return iterator (node_traits::get_left(node_ptr(&priv_header())), this); }
//! <b>Effects</b>: Returns a const_iterator pointing to the beginning of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator begin() const
{ return cbegin(); }
//! <b>Effects</b>: Returns a const_iterator pointing to the beginning of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator cbegin() const
{ return const_iterator (node_traits::get_left(const_node_ptr(&priv_header())), this); }
//! <b>Effects</b>: Returns an iterator pointing to the end of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
iterator end()
{ return iterator (node_ptr(&priv_header()), this); }
//! <b>Effects</b>: Returns a const_iterator pointing to the end of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator end() const
{ return cend(); }
//! <b>Effects</b>: Returns a const_iterator pointing to the end of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator cend() const
{ return const_iterator (uncast(const_node_ptr(&priv_header())), this); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning of the
//! reversed tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
reverse_iterator rbegin()
{ return reverse_iterator(end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator rbegin() const
{ return const_reverse_iterator(end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator crbegin() const
{ return const_reverse_iterator(end()); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
reverse_iterator rend()
{ return reverse_iterator(begin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator rend() const
{ return const_reverse_iterator(begin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_reverse_iterator crend() const
{ return const_reverse_iterator(begin()); }
//! <b>Precondition</b>: end_iterator must be a valid end iterator
//! of sgtree.
//!
//! <b>Effects</b>: Returns a const reference to the sgtree associated to the end iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static sgtree_impl &container_from_end_iterator(iterator end_iterator)
{ return priv_container_from_end_iterator(end_iterator); }
//! <b>Precondition</b>: end_iterator must be a valid end const_iterator
//! of sgtree.
//!
//! <b>Effects</b>: Returns a const reference to the sgtree associated to the end iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
static const sgtree_impl &container_from_end_iterator(const_iterator end_iterator)
{ return priv_container_from_end_iterator(end_iterator); }
//! <b>Precondition</b>: it must be a valid iterator
//! of rbtree.
//!
//! <b>Effects</b>: Returns a const reference to the tree associated to the iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Logarithmic.
static sgtree_impl &container_from_iterator(iterator it)
{ return priv_container_from_iterator(it); }
//! <b>Precondition</b>: it must be a valid end const_iterator
//! of rbtree.
//!
//! <b>Effects</b>: Returns a const reference to the tree associated to the iterator
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Logarithmic.
static const sgtree_impl &container_from_iterator(const_iterator it)
{ return priv_container_from_iterator(it); }
//! <b>Effects</b>: Returns the value_compare object used by the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If value_compare copy-constructor throws.
value_compare value_comp() const
{ return priv_comp(); }
//! <b>Effects</b>: Returns true is the container is empty.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
bool empty() const
{ return node_algorithms::unique(const_node_ptr(&priv_header())); }
//! <b>Effects</b>: Returns the number of elements stored in the tree.
//!
//! <b>Complexity</b>: Linear to elements contained in *this.
//!
//! <b>Throws</b>: Nothing.
size_type size() const
{
if(constant_time_size)
return this->priv_size_traits().get_size();
else{
return (size_type)node_algorithms::size(const_node_ptr(&priv_header()));
}
}
//! <b>Effects</b>: Swaps the contents of two multisets.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: If the comparison functor's swap call throws.
void swap(sgtree_impl& other)
{
//This can throw
using std::swap;
swap(priv_comp(), priv_comp());
swap(priv_alpha_traits(), priv_alpha_traits());
swap(data_.max_tree_size_, other.data_.max_tree_size_);
//These can't throw
node_algorithms::swap_tree(node_ptr(&priv_header()), node_ptr(&other.priv_header()));
if(constant_time_size){
size_type backup = this->priv_size_traits().get_size();
this->priv_size_traits().set_size(other.priv_size_traits().get_size());
other.priv_size_traits().set_size(backup);
}
}
//! <b>Requires</b>: value must be an lvalue
//!
//! <b>Effects</b>: Inserts value into the tree before the upper bound.
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
iterator insert_equal(reference value)
{
detail::key_nodeptr_comp<value_compare, sgtree_impl>
key_node_comp(priv_comp(), this);
node_ptr to_insert(get_real_value_traits().to_node_ptr(value));
if(safemode_or_autounlink)
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert));
this->priv_size_traits().increment();
std::size_t max_tree_size = (std::size_t)data_.max_tree_size_;
node_ptr p = node_algorithms::insert_equal_upper_bound
(node_ptr(&priv_header()), to_insert, key_node_comp
, (size_type)this->size(), this->get_h_alpha_func(), max_tree_size);
data_.max_tree_size_ = (size_type)max_tree_size;
return iterator(p, this);
}
//! <b>Requires</b>: value must be an lvalue, and "hint" must be
//! a valid iterator.
//!
//! <b>Effects</b>: Inserts x into the tree, using "hint" as a hint to
//! where it will be inserted. If "hint" is the upper_bound
//! the insertion takes constant time (two comparisons in the worst case)
//!
//! <b>Complexity</b>: Logarithmic in general, but it is amortized
//! constant time if t is inserted immediately before hint.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
iterator insert_equal(const_iterator hint, reference value)
{
detail::key_nodeptr_comp<value_compare, sgtree_impl>
key_node_comp(priv_comp(), this);
node_ptr to_insert(get_real_value_traits().to_node_ptr(value));
if(safemode_or_autounlink)
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert));
this->priv_size_traits().increment();
std::size_t max_tree_size = (std::size_t)data_.max_tree_size_;
node_ptr p = node_algorithms::insert_equal
(node_ptr(&priv_header()), hint.pointed_node(), to_insert, key_node_comp
, (std::size_t)this->size(), this->get_h_alpha_func(), max_tree_size);
data_.max_tree_size_ = (size_type)max_tree_size;
return iterator(p, this);
}
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue
//! of type value_type.
//!
//! <b>Effects</b>: Inserts a each element of a range into the tree
//! before the upper bound of the key of each element.
//!
//! <b>Complexity</b>: Insert range is in general O(N * log(N)), where N is the
//! size of the range. However, it is linear in N if the range is already sorted
//! by value_comp().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
template<class Iterator>
void insert_equal(Iterator b, Iterator e)
{
iterator end(this->end());
for (; b != e; ++b)
this->insert_equal(end, *b);
}
//! <b>Requires</b>: value must be an lvalue
//!
//! <b>Effects</b>: Inserts value into the tree if the value
//! is not already present.
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
std::pair<iterator, bool> insert_unique(reference value)
{
insert_commit_data commit_data;
std::pair<iterator, bool> ret = insert_unique_check(value, commit_data);
if(!ret.second)
return ret;
return std::pair<iterator, bool> (insert_unique_commit(value, commit_data), true);
}
//! <b>Requires</b>: value must be an lvalue, and "hint" must be
//! a valid iterator
//!
//! <b>Effects</b>: Tries to insert x into the tree, using "hint" as a hint
//! to where it will be inserted.
//!
//! <b>Complexity</b>: Logarithmic in general, but it is amortized
//! constant time (two comparisons in the worst case)
//! if t is inserted immediately before hint.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
iterator insert_unique(const_iterator hint, reference value)
{
insert_commit_data commit_data;
std::pair<iterator, bool> ret = insert_unique_check(hint, value, commit_data);
if(!ret.second)
return ret.first;
return insert_unique_commit(value, commit_data);
}
//! <b>Requires</b>: Dereferencing iterator must yield an lvalue
//! of type value_type.
//!
//! <b>Effects</b>: Tries to insert each element of a range into the tree.
//!
//! <b>Complexity</b>: Insert range is in general O(N * log(N)), where N is the
//! size of the range. However, it is linear in N if the range is already sorted
//! by value_comp().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Does not affect the validity of iterators and references.
//! No copy-constructors are called.
template<class Iterator>
void insert_unique(Iterator b, Iterator e)
{
if(this->empty()){
iterator end(this->end());
for (; b != e; ++b)
this->insert_unique(end, *b);
}
else{
for (; b != e; ++b)
this->insert_unique(*b);
}
}
std::pair<iterator, bool> insert_unique_check
(const_reference value, insert_commit_data &commit_data)
{ return insert_unique_check(value, priv_comp(), commit_data); }
template<class KeyType, class KeyValueCompare>
std::pair<iterator, bool> insert_unique_check
(const KeyType &key, KeyValueCompare key_value_comp, insert_commit_data &commit_data)
{
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl>
comp(key_value_comp, this);
std::pair<node_ptr, bool> ret =
(node_algorithms::insert_unique_check
(node_ptr(&priv_header()), key, comp, commit_data));
return std::pair<iterator, bool>(iterator(ret.first, this), ret.second);
}
std::pair<iterator, bool> insert_unique_check
(const_iterator hint, const_reference value, insert_commit_data &commit_data)
{ return insert_unique_check(hint, value, priv_comp(), commit_data); }
template<class KeyType, class KeyValueCompare>
std::pair<iterator, bool> insert_unique_check
(const_iterator hint, const KeyType &key
,KeyValueCompare key_value_comp, insert_commit_data &commit_data)
{
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl>
comp(key_value_comp, this);
std::pair<node_ptr, bool> ret =
(node_algorithms::insert_unique_check
(node_ptr(&priv_header()), hint.pointed_node(), key, comp, commit_data));
return std::pair<iterator, bool>(iterator(ret.first, this), ret.second);
}
iterator insert_unique_commit(reference value, const insert_commit_data &commit_data)
{
node_ptr to_insert(get_real_value_traits().to_node_ptr(value));
if(safemode_or_autounlink)
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(node_algorithms::unique(to_insert));
this->priv_size_traits().increment();
std::size_t max_tree_size = (std::size_t)data_.max_tree_size_;
node_algorithms::insert_unique_commit
( node_ptr(&priv_header()), to_insert, commit_data
, (std::size_t)this->size(), this->get_h_alpha_func(), max_tree_size);
data_.max_tree_size_ = (size_type)max_tree_size;
return iterator(to_insert, this);
}
//! <b>Effects</b>: Erases the element pointed to by pos.
//!
//! <b>Complexity</b>: Average complexity for erase element is constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
iterator erase(iterator i)
{
iterator ret(i);
++ret;
node_ptr to_erase(i.pointed_node());
if(safemode_or_autounlink)
BOOST_INTRUSIVE_SAFE_HOOK_DEFAULT_ASSERT(!node_algorithms::unique(to_erase));
std::size_t max_tree_size = data_.max_tree_size_;
node_algorithms::erase
( &priv_header(), to_erase, (std::size_t)this->size()
, max_tree_size, this->get_alpha_by_max_size_func());
data_.max_tree_size_ = (size_type)max_tree_size;
this->priv_size_traits().decrement();
if(safemode_or_autounlink)
node_algorithms::init(to_erase);
return ret;
}
//! <b>Effects</b>: Erases the range pointed to by b end e.
//!
//! <b>Complexity</b>: Average complexity for erase range is at most
//! O(log(size() + N)), where N is the number of elements in the range.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
iterator erase(iterator b, iterator e)
{ size_type n; return private_erase(b, e, n); }
//! <b>Effects</b>: Erases all the elements with the given value.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size() + N).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
size_type erase(const_reference value)
{ return this->erase(value, priv_comp()); }
//! <b>Effects</b>: Erases all the elements with the given key.
//! according to the comparison functor "comp".
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size() + N).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class KeyType, class KeyValueCompare>
size_type erase(const KeyType& key, KeyValueCompare comp)
{
std::pair<iterator,iterator> p = this->equal_range(key, comp);
size_type n;
private_erase(p.first, p.second, n);
return n;
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the element pointed to by pos.
//! Disposer::operator()(pointer) is called for the removed element.
//!
//! <b>Complexity</b>: Average complexity for erase element is constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class Disposer>
iterator erase_and_dispose(iterator i, Disposer disposer)
{
node_ptr to_erase(i.pointed_node());
iterator ret(this->erase(i));
disposer(get_real_value_traits().to_value_ptr(to_erase));
return ret;
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases the range pointed to by b end e.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Complexity</b>: Average complexity for erase range is at most
//! O(log(size() + N)), where N is the number of elements in the range.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class Disposer>
iterator erase_and_dispose(iterator b, iterator e, Disposer disposer)
{ size_type n; return private_erase(b, e, n, disposer); }
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements with the given value.
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size() + N).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
template<class Disposer>
size_type erase_and_dispose(const_reference value, Disposer disposer)
{
std::pair<iterator,iterator> p = this->equal_range(value);
size_type n;
private_erase(p.first, p.second, n, disposer);
return n;
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements with the given key.
//! according to the comparison functor "comp".
//! Disposer::operator()(pointer) is called for the removed elements.
//!
//! <b>Returns</b>: The number of erased elements.
//!
//! <b>Complexity</b>: O(log(size() + N).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators
//! to the erased elements.
template<class KeyType, class KeyValueCompare, class Disposer>
size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer)
{
std::pair<iterator,iterator> p = this->equal_range(key, comp);
size_type n;
private_erase(p.first, p.second, n, disposer);
return n;
}
//! <b>Effects</b>: Erases all of the elements.
//!
//! <b>Complexity</b>: Linear to the number of elements on the container.
//! if it's a safe-mode or auto-unlink value_type. Constant time otherwise.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. No destructors are called.
void clear()
{
if(safemode_or_autounlink){
this->clear_and_dispose(detail::null_disposer());
}
else{
node_algorithms::init_header(&priv_header());
this->priv_size_traits().set_size(0);
}
}
//! <b>Effects</b>: Erases all of the elements calling disposer(p) for
//! each node to be erased.
//! <b>Complexity</b>: Average complexity for is at most O(log(size() + N)),
//! where N is the number of elements in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: Invalidates the iterators (but not the references)
//! to the erased elements. Calls N times to disposer functor.
template<class Disposer>
void clear_and_dispose(Disposer disposer)
{
node_algorithms::clear_and_dispose(node_ptr(&priv_header())
, detail::node_disposer<Disposer, sgtree_impl>(disposer, this));
node_algorithms::init_header(&priv_header());
this->priv_size_traits().set_size(0);
}
//! <b>Effects</b>: Returns the number of contained elements with the given value
//!
//! <b>Complexity</b>: Logarithmic to the number of elements contained plus lineal
//! to number of objects with the given value.
//!
//! <b>Throws</b>: Nothing.
size_type count(const_reference value) const
{ return this->count(value, priv_comp()); }
//! <b>Effects</b>: Returns the number of contained elements with the given key
//!
//! <b>Complexity</b>: Logarithmic to the number of elements contained plus lineal
//! to number of objects with the given key.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
size_type count(const KeyType &key, KeyValueCompare comp) const
{
std::pair<const_iterator, const_iterator> ret = this->equal_range(key, comp);
return std::distance(ret.first, ret.second);
}
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is not less than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
iterator lower_bound(const_reference value)
{ return this->lower_bound(value, priv_comp()); }
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is not less than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
const_iterator lower_bound(const_reference value) const
{ return this->lower_bound(value, priv_comp()); }
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is not less than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
iterator lower_bound(const KeyType &key, KeyValueCompare comp)
{
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl>
key_node_comp(comp, this);
return iterator(node_algorithms::lower_bound
(const_node_ptr(&priv_header()), key, key_node_comp), this);
}
//! <b>Effects</b>: Returns a const iterator to the first element whose
//! key is not less than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
const_iterator lower_bound(const KeyType &key, KeyValueCompare comp) const
{
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl>
key_node_comp(comp, this);
return const_iterator(node_algorithms::lower_bound
(const_node_ptr(&priv_header()), key, key_node_comp), this);
}
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is greater than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
iterator upper_bound(const_reference value)
{ return this->upper_bound(value, priv_comp()); }
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is greater than k according to comp or end() if that element
//! does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
iterator upper_bound(const KeyType &key, KeyValueCompare comp)
{
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl>
key_node_comp(comp, this);
return iterator(node_algorithms::upper_bound
(const_node_ptr(&priv_header()), key, key_node_comp), this);
}
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is greater than k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
const_iterator upper_bound(const_reference value) const
{ return this->upper_bound(value, priv_comp()); }
//! <b>Effects</b>: Returns an iterator to the first element whose
//! key is greater than k according to comp or end() if that element
//! does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
const_iterator upper_bound(const KeyType &key, KeyValueCompare comp) const
{
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl>
key_node_comp(comp, this);
return const_iterator(node_algorithms::upper_bound
(const_node_ptr(&priv_header()), key, key_node_comp), this);
}
//! <b>Effects</b>: Finds an iterator to the first element whose key is
//! k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
iterator find(const_reference value)
{ return this->find(value, priv_comp()); }
//! <b>Effects</b>: Finds an iterator to the first element whose key is
//! k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
iterator find(const KeyType &key, KeyValueCompare comp)
{
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl>
key_node_comp(comp, this);
return iterator
(node_algorithms::find(const_node_ptr(&priv_header()), key, key_node_comp), this);
}
//! <b>Effects</b>: Finds a const_iterator to the first element whose key is
//! k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
const_iterator find(const_reference value) const
{ return this->find(value, priv_comp()); }
//! <b>Effects</b>: Finds a const_iterator to the first element whose key is
//! k or end() if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
const_iterator find(const KeyType &key, KeyValueCompare comp) const
{
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl>
key_node_comp(comp, this);
return const_iterator
(node_algorithms::find(const_node_ptr(&priv_header()), key, key_node_comp), this);
}
//! <b>Effects</b>: Finds a range containing all elements whose key is k or
//! an empty range that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
std::pair<iterator,iterator> equal_range(const_reference value)
{ return this->equal_range(value, priv_comp()); }
//! <b>Effects</b>: Finds a range containing all elements whose key is k or
//! an empty range that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
std::pair<iterator,iterator> equal_range(const KeyType &key, KeyValueCompare comp)
{
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl>
key_node_comp(comp, this);
std::pair<node_ptr, node_ptr> ret
(node_algorithms::equal_range(const_node_ptr(&priv_header()), key, key_node_comp));
return std::pair<iterator, iterator>(iterator(ret.first, this), iterator(ret.second, this));
}
//! <b>Effects</b>: Finds a range containing all elements whose key is k or
//! an empty range that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
std::pair<const_iterator, const_iterator>
equal_range(const_reference value) const
{ return this->equal_range(value, priv_comp()); }
//! <b>Effects</b>: Finds a range containing all elements whose key is k or
//! an empty range that indicates the position where those elements would be
//! if they there is no elements with key k.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
template<class KeyType, class KeyValueCompare>
std::pair<const_iterator, const_iterator>
equal_range(const KeyType &key, KeyValueCompare comp) const
{
detail::key_nodeptr_comp<KeyValueCompare, sgtree_impl>
key_node_comp(comp, this);
std::pair<node_ptr, node_ptr> ret
(node_algorithms::equal_range(const_node_ptr(&priv_header()), key, key_node_comp));
return std::pair<const_iterator, const_iterator>(const_iterator(ret.first, this), const_iterator(ret.second, this));
}
//! <b>Requires</b>: Disposer::operator()(pointer) shouldn't throw.
//!
//! <b>Effects</b>: Erases all the elements from *this
//! calling Disposer::operator()(pointer), clones all the
//! elements from src calling Cloner::operator()(const_reference )
//! and inserts them on *this.
//!
//! If cloner throws, all cloned elements are unlinked and disposed
//! calling Disposer::operator()(pointer).
//!
//! <b>Complexity</b>: Linear to erased plus inserted elements.
//!
//! <b>Throws</b>: If cloner throws.
template <class Cloner, class Disposer>
void clone_from(const sgtree_impl &src, Cloner cloner, Disposer disposer)
{
this->clear_and_dispose(disposer);
if(!src.empty()){
node_algorithms::clone
(const_node_ptr(&src.priv_header())
,node_ptr(&this->priv_header())
,detail::node_cloner<Cloner, sgtree_impl>(cloner, this)
,detail::node_disposer<Disposer, sgtree_impl>(disposer, this));
this->priv_size_traits().set_size(src.priv_size_traits().get_size());
}
}
//! <b>Effects</b>: Unlinks the leftmost node from the tree.
//!
//! <b>Complexity</b>: Average complexity is constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: This function breaks the tree and the tree can
//! only be used for more unlink_leftmost_without_rebalance calls.
//! This function is normally used to achieve a step by step
//! controlled destruction of the tree.
pointer unlink_leftmost_without_rebalance()
{
node_ptr to_be_disposed(node_algorithms::unlink_leftmost_without_rebalance
(node_ptr(&priv_header())));
if(!to_be_disposed)
return 0;
this->priv_size_traits().decrement();
if(safemode_or_autounlink)//If this is commented does not work with normal_link
node_algorithms::init(to_be_disposed);
return get_real_value_traits().to_value_ptr(to_be_disposed);
}
//! <b>Requires</b>: replace_this must be a valid iterator of *this
//! and with_this must not be inserted in any tree.
//!
//! <b>Effects</b>: Replaces replace_this in its position in the
//! tree with with_this. The tree does not need to be rebalanced.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! with_this is not equivalent to *replace_this according to the
//! ordering rules. This function is faster than erasing and inserting
//! the node, since no rebalancing or comparison is needed.
void replace_node(iterator replace_this, reference with_this)
{
node_algorithms::replace_node( get_real_value_traits().to_node_ptr(*replace_this)
, node_ptr(&priv_header())
, get_real_value_traits().to_node_ptr(with_this));
}
//! <b>Requires</b>: value must be an lvalue and shall be in a set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid iterator i belonging to the set
//! that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This static function is available only if the <i>value traits</i>
//! is stateless.
static iterator s_iterator_to(reference value)
{
BOOST_STATIC_ASSERT((!stateful_value_traits));
return iterator (value_traits::to_node_ptr(value), 0);
}
//! <b>Requires</b>: value must be an lvalue and shall be in a set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid const_iterator i belonging to the
//! set that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This static function is available only if the <i>value traits</i>
//! is stateless.
static const_iterator s_iterator_to(const_reference value)
{
BOOST_STATIC_ASSERT((!stateful_value_traits));
return const_iterator (value_traits::to_node_ptr(const_cast<reference> (value)), 0);
}
//! <b>Requires</b>: value must be an lvalue and shall be in a set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid iterator i belonging to the set
//! that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
iterator iterator_to(reference value)
{ return iterator (value_traits::to_node_ptr(value), this); }
//! <b>Requires</b>: value must be an lvalue and shall be in a set of
//! appropriate type. Otherwise the behavior is undefined.
//!
//! <b>Effects</b>: Returns: a valid const_iterator i belonging to the
//! set that points to the value
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
const_iterator iterator_to(const_reference value) const
{ return const_iterator (value_traits::to_node_ptr(const_cast<reference> (value)), this); }
//! <b>Requires</b>: value shall not be in a tree.
//!
//! <b>Effects</b>: init_node puts the hook of a value in a well-known default
//! state.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: This function puts the hook in the well-known default state
//! used by auto_unlink and safe hooks.
static void init_node(reference value)
{ node_algorithms::init(value_traits::to_node_ptr(value)); }
//! <b>Effects</b>: Rebalances the tree.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear.
void rebalance()
{ node_algorithms::rebalance(node_ptr(&priv_header())); }
//! <b>Requires</b>: old_root is a node of a tree.
//!
//! <b>Effects</b>: Rebalances the subtree rooted at old_root.
//!
//! <b>Returns</b>: The new root of the subtree.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements in the subtree.
iterator rebalance_subtree(iterator root)
{ return iterator(node_algorithms::rebalance_subtree(root.pointed_node()), this); }
//! <b>Returns</b>: The balance factor (alpha) used in this tree
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
float balance_factor() const
{ return this->priv_alpha(); }
//! <b>Requires</b>: new_alpha must be a value between 0.5 and 1.0
//!
//! <b>Effects</b>: Establishes a new balance factor (alpha) and rebalances
//! the tree if the new balance factor is stricter (less) than the old factor.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements in the subtree.
void balance_factor(float new_alpha)
{
BOOST_INTRUSIVE_INVARIANT_ASSERT((new_alpha > 0.5f && new_alpha < 1.0f));
if(new_alpha < 0.5f && new_alpha >= 1.0f) return;
//The alpha factor CAN't be changed if the fixed, floating operation-less
//1/sqrt(2) alpha factor option is activated
BOOST_STATIC_ASSERT((floating_point));
float old_alpha = this->priv_alpha();
this->priv_alpha(new_alpha);
if(new_alpha < old_alpha){
data_.max_tree_size_ = this->size();
this->rebalance();
}
}
/*
//! <b>Effects</b>: removes x from a tree of the appropriate type. It has no effect,
//! if x is not in such a tree.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Note</b>: This static function is only usable with the "safe mode"
//! hook and non-constant time size lists. Otherwise, the user must use
//! the non-static "erase(reference )" member. If the user calls
//! this function with a non "safe mode" or constant time size list
//! a compilation error will be issued.
template<class T>
static void remove_node(T& value)
{
//This function is only usable for safe mode hooks and non-constant
//time lists.
//BOOST_STATIC_ASSERT((!(safemode_or_autounlink && constant_time_size)));
BOOST_STATIC_ASSERT((!constant_time_size));
BOOST_STATIC_ASSERT((boost::is_convertible<T, value_type>::value));
node_ptr to_remove(value_traits::to_node_ptr(value));
node_algorithms::unlink_and_rebalance(to_remove);
if(safemode_or_autounlink)
node_algorithms::init(to_remove);
}
*/
/// @cond
private:
template<class Disposer>
iterator private_erase(iterator b, iterator e, size_type &n, Disposer disposer)
{
for(n = 0; b != e; ++n)
this->erase_and_dispose(b++, disposer);
return b;
}
iterator private_erase(iterator b, iterator e, size_type &n)
{
for(n = 0; b != e; ++n)
this->erase(b++);
return b;
}
/// @endcond
private:
static sgtree_impl &priv_container_from_end_iterator(const const_iterator &end_iterator)
{
header_plus_alpha *r = detail::parent_from_member<header_plus_alpha, node>
( detail::get_pointer(end_iterator.pointed_node()), &header_plus_alpha::header_);
node_plus_pred_t *n = detail::parent_from_member
<node_plus_pred_t, header_plus_alpha>(r, &node_plus_pred_t::header_plus_alpha_);
data_t *d = detail::parent_from_member<data_t, node_plus_pred_t>(n, &data_t::node_plus_pred_);
sgtree_impl *scapegoat = detail::parent_from_member<sgtree_impl, data_t>(d, &sgtree_impl::data_);
return *scapegoat;
}
static sgtree_impl &priv_container_from_iterator(const const_iterator &it)
{ return priv_container_from_end_iterator(it.end_iterator_from_it()); }
};
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template<class Config>
#endif
inline bool operator<
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
(const sgtree_impl<T, Options...> &x, const sgtree_impl<T, Options...> &y)
#else
(const sgtree_impl<Config> &x, const sgtree_impl<Config> &y)
#endif
{ return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); }
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template<class Config>
#endif
bool operator==
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
(const sgtree_impl<T, Options...> &x, const sgtree_impl<T, Options...> &y)
#else
(const sgtree_impl<Config> &x, const sgtree_impl<Config> &y)
#endif
{
typedef sgtree_impl<Config> tree_type;
typedef typename tree_type::const_iterator const_iterator;
if(tree_type::constant_time_size && x.size() != y.size()){
return false;
}
const_iterator end1 = x.end();
const_iterator i1 = x.begin();
const_iterator i2 = y.begin();
if(tree_type::constant_time_size){
while (i1 != end1 && *i1 == *i2) {
++i1;
++i2;
}
return i1 == end1;
}
else{
const_iterator end2 = y.end();
while (i1 != end1 && i2 != end2 && *i1 == *i2) {
++i1;
++i2;
}
return i1 == end1 && i2 == end2;
}
}
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template<class Config>
#endif
inline bool operator!=
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
(const sgtree_impl<T, Options...> &x, const sgtree_impl<T, Options...> &y)
#else
(const sgtree_impl<Config> &x, const sgtree_impl<Config> &y)
#endif
{ return !(x == y); }
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template<class Config>
#endif
inline bool operator>
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
(const sgtree_impl<T, Options...> &x, const sgtree_impl<T, Options...> &y)
#else
(const sgtree_impl<Config> &x, const sgtree_impl<Config> &y)
#endif
{ return y < x; }
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template<class Config>
#endif
inline bool operator<=
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
(const sgtree_impl<T, Options...> &x, const sgtree_impl<T, Options...> &y)
#else
(const sgtree_impl<Config> &x, const sgtree_impl<Config> &y)
#endif
{ return !(y < x); }
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template<class Config>
#endif
inline bool operator>=
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
(const sgtree_impl<T, Options...> &x, const sgtree_impl<T, Options...> &y)
#else
(const sgtree_impl<Config> &x, const sgtree_impl<Config> &y)
#endif
{ return !(x < y); }
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template<class Config>
#endif
inline void swap
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
(sgtree_impl<T, Options...> &x, sgtree_impl<T, Options...> &y)
#else
(sgtree_impl<Config> &x, sgtree_impl<Config> &y)
#endif
{ x.swap(y); }
/// @cond
template<class T, class O1 = none, class O2 = none
, class O3 = none, class O4 = none
, class O5 = none, class O6 = none
, class O7 = none
>
struct make_sgtree_opt
{
typedef typename pack_options
< sg_set_defaults<T>, O1, O2, O3, O4>::type packed_options;
typedef typename detail::get_value_traits
<T, typename packed_options::value_traits>::type value_traits;
typedef sg_setopt
< value_traits
, typename packed_options::compare
, typename packed_options::size_type
, packed_options::floating_point
> type;
};
/// @endcond
//! Helper metafunction to define a \c sgtree that yields to the same type when the
//! same options (either explicitly or implicitly) are used.
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class T, class ...Options>
#else
template<class T, class O1 = none, class O2 = none
, class O3 = none, class O4 = none>
#endif
struct make_sgtree
{
/// @cond
typedef sgtree_impl
< typename make_sgtree_opt<T, O1, O2, O3, O4>::type
> implementation_defined;
/// @endcond
typedef implementation_defined type;
};
#ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class T, class O1, class O2, class O3, class O4>
class sgtree
: public make_sgtree<T, O1, O2, O3, O4>::type
{
typedef typename make_sgtree
<T, O1, O2, O3, O4>::type Base;
public:
typedef typename Base::value_compare value_compare;
typedef typename Base::value_traits value_traits;
typedef typename Base::real_value_traits real_value_traits;
typedef typename Base::iterator iterator;
typedef typename Base::const_iterator const_iterator;
//Assert if passed value traits are compatible with the type
BOOST_STATIC_ASSERT((detail::is_same<typename real_value_traits::value_type, T>::value));
sgtree( const value_compare &cmp = value_compare()
, const value_traits &v_traits = value_traits())
: Base(cmp, v_traits)
{}
template<class Iterator>
sgtree( bool unique, Iterator b, Iterator e
, const value_compare &cmp = value_compare()
, const value_traits &v_traits = value_traits())
: Base(unique, b, e, cmp, v_traits)
{}
static sgtree &container_from_end_iterator(iterator end_iterator)
{ return static_cast<sgtree &>(Base::container_from_end_iterator(end_iterator)); }
static const sgtree &container_from_end_iterator(const_iterator end_iterator)
{ return static_cast<const sgtree &>(Base::container_from_end_iterator(end_iterator)); }
};
#endif
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_SGTREE_HPP