Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of boost. Click here for the latest Boost documentation.
PrevUpHomeNext

Class template private_adaptive_pool

boost::interprocess::private_adaptive_pool

Synopsis

template<typename T, typename SegmentManager, std::size_t NodesPerChunk, 
         std::size_t MaxFreeChunks, unsigned char OverheadPercent> 
class private_adaptive_pool {
public:
  // types
  typedef implementation_defined::segment_manager segment_manager;
  typedef segment_manager::void_pointer           void_pointer;   
  typedef implementation_defined::pointer         pointer;        
  typedef implementation_defined::const_pointer   const_pointer;  
  typedef T                                       value_type;     
  typedef unspecified                             reference;      
  typedef unspecified                             const_reference;
  typedef std::size_t                             size_type;      
  typedef std::ptrdiff_t                          difference_type;
  template<typename T2> 
  struct rebind {
    // types
    typedef private_adaptive_pool< T2, SegmentManager, NodesPerChunk, MaxFreeChunks, OverheadPercent > other;
  };

  // construct/copy/destruct
  private_adaptive_pool(segment_manager *);
  private_adaptive_pool(const private_adaptive_pool &);
  template<typename T2> 
    private_adaptive_pool(const private_adaptive_pool< T2, SegmentManager, NodesPerChunk, MaxFreeChunks, OverheadPercent > &);
  template<typename T2, typename SegmentManager2, std::size_t N2, 
           std::size_t F2, unsigned char OP2> 
    private_adaptive_pool& 
    operator=(const private_adaptive_pool< T2, SegmentManager2, N2, F2 > &);
  private_adaptive_pool& operator=(const private_adaptive_pool &);
  ~private_adaptive_pool();

  // public member functions
  node_pool_t * get_node_pool() const;
  segment_manager * get_segment_manager() const;
  size_type max_size() const;
  pointer allocate(size_type, cvoid_pointer = 0) ;
  void deallocate(const pointer &, size_type) ;
  void deallocate_free_chunks() ;
  pointer address(reference) const;
  const_pointer address(const_reference) const;
  void construct(const pointer &) ;
  void destroy(const pointer &) ;
  size_type size(const pointer &) const;
  std::pair< pointer, bool > 
  allocation_command(allocation_type, size_type, size_type, size_type &, 
                     const pointer & = 0) ;
  multiallocation_iterator allocate_many(size_type, std::size_t) ;
  multiallocation_iterator allocate_many(const size_type *, size_type) ;
  void deallocate_many(multiallocation_iterator) ;
  pointer allocate_one() ;
  multiallocation_iterator allocate_individual(std::size_t) ;
  void deallocate_one(const pointer &) ;
  void deallocate_individual(multiallocation_iterator) ;
};

Description

An STL node allocator that uses a segment manager as memory source. The internal pointer type will of the same type (raw, smart) as "typename SegmentManager::void_pointer" type. This allows placing the allocator in shared memory, memory mapped-files, etc... This allocator has its own node pool.

NodesPerChunk is the minimum number of nodes of nodes allocated at once when the allocator needs runs out of nodes. MaxFreeChunks is the maximum number of totally free chunks that the adaptive node pool will hold. The rest of the totally free chunks will be deallocated with the segment manager.

OverheadPercent is the (approximated) maximum size overhead (1-20%) of the allocator: (memory usable for nodes / total memory allocated from the segment manager)

private_adaptive_pool public construct/copy/destruct

  1. private_adaptive_pool(segment_manager * segment_mngr);

    Constructor from a segment manager. If not present, constructs a node pool. Increments the reference count of the associated node pool. Can throw boost::interprocess::bad_alloc

  2. private_adaptive_pool(const private_adaptive_pool & other);

    Copy constructor from other private_adaptive_pool. Increments the reference count of the associated node pool. Never throws

  3. template<typename T2> 
      private_adaptive_pool(const private_adaptive_pool< T2, SegmentManager, NodesPerChunk, MaxFreeChunks, OverheadPercent > & other);

    Copy constructor from related private_adaptive_pool. If not present, constructs a node pool. Increments the reference count of the associated node pool. Can throw boost::interprocess::bad_alloc

  4. template<typename T2, typename SegmentManager2, std::size_t N2, 
             std::size_t F2, unsigned char OP2> 
      private_adaptive_pool& 
      operator=(const private_adaptive_pool< T2, SegmentManager2, N2, F2 > &);

    Not assignable from related private_adaptive_pool

  5. private_adaptive_pool& operator=(const private_adaptive_pool &);

    Not assignable from other private_adaptive_pool

  6. ~private_adaptive_pool();

    Destructor, removes node_pool_t from memory if its reference count reaches to zero. Never throws

private_adaptive_pool public member functions

  1. node_pool_t * get_node_pool() const;

    Returns a pointer to the node pool. Never throws

  2. segment_manager * get_segment_manager() const;

    Returns the segment manager. Never throws

  3. size_type max_size() const;

    Returns the number of elements that could be allocated. Never throws

  4. pointer allocate(size_type count, cvoid_pointer hint = 0) ;

    Allocate memory for an array of count elements. Throws boost::interprocess::bad_alloc if there is no enough memory

  5. void deallocate(const pointer & ptr, size_type count) ;

    Deallocate allocated memory. Never throws

  6. void deallocate_free_chunks() ;

    Deallocates all free chunks of the pool

  7. pointer address(reference value) const;

    Returns address of mutable object. Never throws

  8. const_pointer address(const_reference value) const;

    Returns address of non mutable object. Never throws

  9. void construct(const pointer & ptr) ;

    Default construct an object. Throws if T's default constructor throws

  10. void destroy(const pointer & ptr) ;

    Destroys object. Throws if object's destructor throws

  11. size_type size(const pointer & p) const;

    Returns maximum the number of objects the previously allocated memory pointed by p can hold. This size only works for memory allocated with allocate, allocation_command and allocate_many.

  12. std::pair< pointer, bool > 
    allocation_command(allocation_type command, size_type limit_size, 
                       size_type preferred_size, size_type & received_size, 
                       const pointer & reuse = 0) ;
  13. multiallocation_iterator 
    allocate_many(size_type elem_size, std::size_t num_elements) ;

    Allocates many elements of size elem_size in a contiguous chunk of memory. The minimum number to be allocated is min_elements, the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to received_size. The elements must be deallocated with deallocate(...)

  14. multiallocation_iterator 
    allocate_many(const size_type * elem_sizes, size_type n_elements) ;

    Allocates n_elements elements, each one of size elem_sizes[i]in a contiguous chunk of memory. The elements must be deallocated

  15. void deallocate_many(multiallocation_iterator it) ;

    Allocates many elements of size elem_size in a contiguous chunk of memory. The minimum number to be allocated is min_elements, the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to received_size. The elements must be deallocated with deallocate(...)

  16. pointer allocate_one() ;

    Allocates just one object. Memory allocated with this function must be deallocated only with deallocate_one(). Throws boost::interprocess::bad_alloc if there is no enough memory

  17. multiallocation_iterator allocate_individual(std::size_t num_elements) ;

    Allocates many elements of size == 1 in a contiguous chunk of memory. The minimum number to be allocated is min_elements, the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to received_size. Memory allocated with this function must be deallocated only with deallocate_one().

  18. void deallocate_one(const pointer & p) ;

    Deallocates memory previously allocated with allocate_one(). You should never use deallocate_one to deallocate memory allocated with other functions different from allocate_one(). Never throws

  19. void deallocate_individual(multiallocation_iterator it) ;

    Allocates many elements of size == 1 in a contiguous chunk of memory. The minimum number to be allocated is min_elements, the preferred and maximum number is preferred_elements. The number of actually allocated elements is will be assigned to received_size. Memory allocated with this function must be deallocated only with deallocate_one().


PrevUpHomeNext