boost/xpressive/proto/expr.hpp
#ifndef BOOST_PP_IS_ITERATING
///////////////////////////////////////////////////////////////////////////////
/// \file expr.hpp
/// Contains definition of expr\<\> class template.
//
// Copyright 2007 Eric Niebler. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_PROTO_EXPR_HPP_EAN_04_01_2005
#define BOOST_PROTO_EXPR_HPP_EAN_04_01_2005
#include <boost/xpressive/proto/detail/prefix.hpp>
#include <boost/preprocessor/cat.hpp>
#include <boost/preprocessor/arithmetic/inc.hpp>
#include <boost/preprocessor/arithmetic/dec.hpp>
#include <boost/preprocessor/selection/max.hpp>
#include <boost/preprocessor/iteration/iterate.hpp>
#include <boost/preprocessor/facilities/intercept.hpp>
#include <boost/preprocessor/repetition/repeat.hpp>
#include <boost/preprocessor/repetition/repeat_from_to.hpp>
#include <boost/preprocessor/repetition/enum_trailing.hpp>
#include <boost/preprocessor/repetition/enum_params.hpp>
#include <boost/preprocessor/repetition/enum_binary_params.hpp>
#include <boost/preprocessor/repetition/enum_trailing_params.hpp>
#include <boost/preprocessor/repetition/enum_trailing_binary_params.hpp>
#include <boost/utility/result_of.hpp>
#include <boost/utility/addressof.hpp>
#include <boost/xpressive/proto/proto_fwd.hpp>
#include <boost/xpressive/proto/ref.hpp>
#include <boost/xpressive/proto/args.hpp>
#include <boost/xpressive/proto/traits.hpp>
#include <boost/xpressive/proto/detail/suffix.hpp>
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma warning(push)
# pragma warning(disable : 4510) // default constructor could not be generated
# pragma warning(disable : 4512) // assignment operator could not be generated
# pragma warning(disable : 4610) // user defined constructor required
#endif
namespace boost { namespace proto
{
/// INTERNAL ONLY
///
#define BOOST_PROTO_ARG(z, n, data)\
typedef typename Args::BOOST_PP_CAT(arg, n) BOOST_PP_CAT(proto_arg, n);\
BOOST_PP_CAT(proto_arg, n) BOOST_PP_CAT(arg, n);\
/**/
/// INTERNAL ONLY
///
#define BOOST_PROTO_VOID(z, n, data)\
typedef void BOOST_PP_CAT(proto_arg, n);\
/**/
/// INTERNAL ONLY
///
#define BOOST_PROTO_AS_OP(z, n, data)\
proto::as_arg(BOOST_PP_CAT(a,n))\
/**/
/// INTERNAL ONLY
///
#define BOOST_PROTO_UNREF_ARG_TYPE(z, n, data)\
typename result_of::unref<typename Args::BOOST_PP_CAT(arg, n)>::const_reference\
/**/
/// INTERNAL ONLY
///
#define BOOST_PROTO_UNREF_ARG(z, n, data)\
proto::unref(this->BOOST_PP_CAT(arg, n))\
/**/
namespace detail
{
template<typename Tag, typename Arg>
struct address_of_hack
{
typedef address_of_hack type;
};
template<typename Expr>
struct address_of_hack<tag::address_of, ref_<Expr> >
{
typedef Expr *type;
};
template<typename X, std::size_t N, typename Y>
void checked_copy(X (&x)[N], Y (&y)[N])
{
for(std::size_t i = 0; i < N; ++i)
{
y[i] = x[i];
}
}
template<typename T, std::size_t N>
struct if_is_array
{};
template<typename T, std::size_t N>
struct if_is_array<T[N], N>
{
typedef int type;
};
}
namespace result_of
{
template<typename Sig, typename This>
struct funop;
#define BOOST_PP_ITERATION_PARAMS_1 (3, (0, BOOST_PP_DEC(BOOST_PROTO_MAX_ARITY), <boost/xpressive/proto/detail/funop.hpp>))
#include BOOST_PP_ITERATE()
}
namespace exprns_
{
#define BOOST_PP_ITERATION_PARAMS_1 (3, (0, BOOST_PROTO_MAX_ARITY, <boost/xpressive/proto/expr.hpp>))
#include BOOST_PP_ITERATE()
}
#undef BOOST_PROTO_ARG
#undef BOOST_PROTO_VOID
#undef BOOST_PROTO_AS_OP
#undef BOOST_PROTO_UNREF_ARG_TYPE
#undef BOOST_PROTO_UNREF_ARG
}}
#if defined(_MSC_VER) && (_MSC_VER >= 1020)
# pragma warning(pop)
#endif
#endif // BOOST_PROTO_EXPR_HPP_EAN_04_01_2005
#elif BOOST_PP_ITERATION_DEPTH() == 1
#define ARG_COUNT BOOST_PP_MAX(1, BOOST_PP_ITERATION())
#define IS_TERMINAL 0 == BOOST_PP_ITERATION()
/// \brief Representation of a node in an expression tree.
///
/// \c proto::expr\<\> is a node in an expression template tree. It
/// is a container for its children sub-trees. It also serves as
/// the terminal nodes of the tree.
///
/// \c Tag is type that represents the operation encoded by
/// this expression. It is typically one of the structs
/// in the \c boost::proto::tag namespace, but it doesn't
/// have to be. If the \c Tag type is \c boost::proto::tag::terminal
/// then this \c expr\<\> type represents a leaf in the
/// expression tree.
///
/// \c Args is a type list representing the type of the children
/// of this expression. It is an instantiation of one
/// of \c proto::args1\<\>, \c proto::args2\<\>, etc. The
/// children types must all themselves be either \c expr\<\>
/// or \c proto::ref_\<proto::expr\<\>\>, unless the \c Tag
/// type is \c boost::proto::tag::terminal, in which case
/// \c Args must be \c proto::args1\<T\>, where \c T can be any
/// type.
template<typename Tag, typename Args>
struct expr<Tag, Args, BOOST_PP_ITERATION() >
{
typedef Tag proto_tag;
typedef mpl::long_<BOOST_PP_ITERATION() > proto_arity;
typedef expr proto_base_expr;
typedef Args proto_args;
typedef default_domain proto_domain;
typedef tag::proto_expr fusion_tag;
typedef void proto_is_expr_;
typedef expr proto_derived_expr;
BOOST_PROTO_IDENTITY_TRANSFORM();
BOOST_PP_REPEAT(ARG_COUNT, BOOST_PROTO_ARG, ~)
BOOST_PP_REPEAT_FROM_TO(ARG_COUNT, BOOST_PROTO_MAX_ARITY, BOOST_PROTO_VOID, ~)
/// \return *this
///
expr const &proto_base() const
{
return *this;
}
/// \overload
///
expr &proto_base()
{
return *this;
}
/// \return A new \c expr\<\> object initialized with the specified
/// arguments.
///
template<BOOST_PP_ENUM_PARAMS(ARG_COUNT, typename A)>
static expr make(BOOST_PP_ENUM_BINARY_PARAMS(ARG_COUNT, A, const &a))
{
expr that = {BOOST_PP_ENUM_PARAMS(ARG_COUNT, a)};
return that;
}
#if IS_TERMINAL
/// \overload
///
template<typename A0>
static expr make(A0 &a0)
{
expr that = {a0};
return that;
}
/// \overload
///
template<typename A0, std::size_t N>
static expr make(A0 (&a0)[N], typename detail::if_is_array<proto_arg0, N>::type = 0)
{
expr that;
detail::checked_copy(a0, that.arg0);
return that;
}
/// \overload
///
template<typename A0, std::size_t N>
static expr make(A0 const (&a0)[N], typename detail::if_is_array<proto_arg0, N>::type = 0)
{
expr that;
detail::checked_copy(a0, that.arg0);
return that;
}
#endif
#if 1 == BOOST_PP_ITERATION()
/// If \c Tag is \c boost::proto::tag::address_of and \c proto_arg0 is
/// \c proto::ref_\<T\>, then \c address_of_hack_type_ is <tt>T*</tt>.
/// Otherwise, it is some undefined type.
typedef typename detail::address_of_hack<Tag, proto_arg0>::type address_of_hack_type_;
/// \return The address of <tt>this->arg0</tt> if \c Tag is
/// \c boost::proto::tag::address_of. Otherwise, this function will
/// fail to compile.
///
/// \attention Proto overloads <tt>operator&</tt>, which means that
/// proto-ified objects cannot have their addresses taken, unless we use
/// the following hack to make \c &x implicitly convertible to \c X*.
operator address_of_hack_type_() const
{
return boost::addressof(this->arg0.expr);
}
#endif
/// Assignment
///
/// \param a The rhs.
/// \return A new \c expr\<\> node representing an assignment of \c a to \c *this.
template<typename A>
expr<tag::assign, args2<ref_<expr const>, typename result_of::as_arg<A>::type> > const
operator =(A &a) const
{
expr<tag::assign, args2<ref_<expr const>, typename result_of::as_arg<A>::type> > that = {{*this}, proto::as_arg(a)};
return that;
}
/// \overload
///
template<typename A>
expr<tag::assign, args2<ref_<expr const>, typename result_of::as_arg<A const>::type> > const
operator =(A const &a) const
{
expr<tag::assign, args2<ref_<expr const>, typename result_of::as_arg<A const>::type> > that = {{*this}, proto::as_arg(a)};
return that;
}
#if IS_TERMINAL
/// \overload
///
template<typename A>
expr<tag::assign, args2<ref_<expr>, typename result_of::as_arg<A>::type> > const
operator =(A &a)
{
expr<tag::assign, args2<ref_<expr>, typename result_of::as_arg<A>::type> > that = {{*this}, proto::as_arg(a)};
return that;
}
/// \overload
///
template<typename A>
expr<tag::assign, args2<ref_<expr>, typename result_of::as_arg<A const>::type> > const
operator =(A const &a)
{
expr<tag::assign, args2<ref_<expr>, typename result_of::as_arg<A const>::type> > that = {{*this}, proto::as_arg(a)};
return that;
}
#endif
/// Subscript
///
/// \param a The rhs.
/// \return A new \c expr\<\> node representing \c *this subscripted with \c a.
template<typename A>
expr<tag::subscript, args2<ref_<expr const>, typename result_of::as_arg<A>::type> > const
operator [](A &a) const
{
expr<tag::subscript, args2<ref_<expr const>, typename result_of::as_arg<A>::type> > that = {{*this}, proto::as_arg(a)};
return that;
}
/// \overload
///
template<typename A>
expr<tag::subscript, args2<ref_<expr const>, typename result_of::as_arg<A const>::type> > const
operator [](A const &a) const
{
expr<tag::subscript, args2<ref_<expr const>, typename result_of::as_arg<A const>::type> > that = {{*this}, proto::as_arg(a)};
return that;
}
#if IS_TERMINAL
/// \overload
///
template<typename A>
expr<tag::subscript, args2<ref_<expr>, typename result_of::as_arg<A>::type> > const
operator [](A &a)
{
expr<tag::subscript, args2<ref_<expr>, typename result_of::as_arg<A>::type> > that = {{*this}, proto::as_arg(a)};
return that;
}
/// \overload
///
template<typename A>
expr<tag::subscript, args2<ref_<expr>, typename result_of::as_arg<A const>::type> > const
operator [](A const &a)
{
expr<tag::subscript, args2<ref_<expr>, typename result_of::as_arg<A const>::type> > that = {{*this}, proto::as_arg(a)};
return that;
}
#endif
/// Encodes the return type of \c expr\<\>::operator(), for use with \c boost::result_of\<\>
///
template<typename Sig>
struct result
{
typedef typename result_of::funop<Sig, expr>::type type;
};
/// Function call
///
/// \return A new \c expr\<\> node representing the function invocation of \c (*this)().
expr<tag::function, args1<ref_<expr const> > > const
operator ()() const
{
expr<tag::function, args1<ref_<expr const> > > that = {{*this}};
return that;
}
#if IS_TERMINAL
/// \overload
///
expr<tag::function, args1<ref_<expr> > > const
operator ()()
{
expr<tag::function, args1<ref_<expr> > > that = {{*this}};
return that;
}
#endif
#define BOOST_PP_ITERATION_PARAMS_2 (3, (1, BOOST_PP_DEC(BOOST_PROTO_MAX_ARITY), <boost/xpressive/proto/expr.hpp>))
#include BOOST_PP_ITERATE()
};
#undef ARG_COUNT
#undef IS_TERMINAL
#elif BOOST_PP_ITERATION_DEPTH() == 2
#define N BOOST_PP_ITERATION()
/// \overload
///
template<BOOST_PP_ENUM_PARAMS(N, typename A)>
typename result_of::BOOST_PP_CAT(funop, N)<expr const BOOST_PP_ENUM_TRAILING_PARAMS(N, const A)>::type const
operator ()(BOOST_PP_ENUM_BINARY_PARAMS(N, A, const &a)) const
{
return result_of::BOOST_PP_CAT(funop, N)<expr const BOOST_PP_ENUM_TRAILING_PARAMS(N, const A)>
::call(*this BOOST_PP_ENUM_TRAILING_PARAMS(N, a));
}
#if IS_TERMINAL
/// \overload
///
template<BOOST_PP_ENUM_PARAMS(N, typename A)>
typename result_of::BOOST_PP_CAT(funop, N)<expr BOOST_PP_ENUM_TRAILING_PARAMS(N, const A)>::type const
operator ()(BOOST_PP_ENUM_BINARY_PARAMS(N, A, const &a))
{
return result_of::BOOST_PP_CAT(funop, N)<expr BOOST_PP_ENUM_TRAILING_PARAMS(N, const A)>
::call(*this BOOST_PP_ENUM_TRAILING_PARAMS(N, a));
}
#endif
#undef N
#endif