boost/regex/v3/regex_match.hpp
/*
*
* Copyright (c) 1998-2002
* Dr John Maddock
*
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*
*/
/*
* LOCATION: see http://www.boost.org for most recent version.
* FILE regex_match.hpp
* VERSION see <boost/version.hpp>
* DESCRIPTION: Regular expression matching algorithms.
* Note this is an internal header file included
* by regex.hpp, do not include on its own.
*/
#ifndef BOOST_REGEX_MATCH_HPP
#define BOOST_REGEX_MATCH_HPP
#ifndef BOOST_REGEX_MAX_STATE_COUNT
# define BOOST_REGEX_MAX_STATE_COUNT 100000000
#endif
#include <boost/limits.hpp>
namespace boost{
namespace re_detail{
#ifdef __BORLANDC__
#pragma option push -a8 -b -Vx -Ve -pc -w-8026 -w-8027
#endif
//
// Unfortunately Rogue Waves standard library appears to have a bug
// in std::basic_string::compare that results in eroneous answers
// in some cases (tested with Borland C++ 5.1, Rogue Wave lib version
// 0x020101) the test case was:
// {39135,0} < {0xff,0}
// which succeeds when it should not.
//
#ifndef _RWSTD_VER
# define STR_COMP(s,p) s.compare(p)
#else
template <class C, class T, class A>
inline int string_compare(const std::basic_string<C,T,A>& s, const C* p)
{ return s.compare(p); }
inline int string_compare(const std::string& s, const char* p)
{ return std::strcmp(s.c_str(), p); }
# ifndef BOOST_NO_WREGEX
inline int string_compare(const std::wstring& s, const wchar_t* p)
{ return std::wcscmp(s.c_str(), p); }
# endif
# define STR_COMP(s,p) string_compare(s,p)
#endif
template<class charT>
inline const charT* re_skip_past_null(const charT* p)
{
while (*p != 0) ++p;
return ++p;
}
template <class iterator, class charT, class traits_type, class Allocator>
iterator BOOST_REGEX_CALL re_is_set_member(iterator next,
iterator last,
const re_set_long* set_,
const reg_expression<charT, traits_type, Allocator>& e)
{
const charT* p = reinterpret_cast<const charT*>(set_+1);
iterator ptr;
unsigned int i;
bool icase = e.flags() & regbase::icase;
if(next == last) return next;
typedef typename traits_type::string_type traits_string_type;
const traits_type& traits_inst = e.get_traits();
// dwa 9/13/00 suppress incorrect MSVC warning - it claims this is never
// referenced
(void)traits_inst;
// try and match a single character, could be a multi-character
// collating element...
for(i = 0; i < set_->csingles; ++i)
{
ptr = next;
if(*p == 0)
{
// treat null string as special case:
if(traits_inst.translate(*ptr, icase) != *p)
{
while(*p == 0)++p;
continue;
}
return set_->isnot ? next : (ptr == next) ? ++next : ptr;
}
else
{
while(*p && (ptr != last))
{
if(traits_inst.translate(*ptr, icase) != *p)
break;
++p;
++ptr;
}
if(*p == 0) // if null we've matched
return set_->isnot ? next : (ptr == next) ? ++next : ptr;
p = re_skip_past_null(p); // skip null
}
}
charT col = traits_inst.translate(*next, icase);
if(set_->cranges || set_->cequivalents)
{
traits_string_type s2(1, col);
traits_string_type s1;
//
// try and match a range, NB only a single character can match
if(set_->cranges)
{
if(e.flags() & regbase::nocollate)
s1 = s2;
else
traits_inst.transform(s1, s2);
for(i = 0; i < set_->cranges; ++i)
{
if(STR_COMP(s1, p) <= 0)
{
while(*p)++p;
++p;
if(STR_COMP(s1, p) >= 0)
return set_->isnot ? next : ++next;
}
else
{
// skip first string
while(*p)++p;
++p;
}
// skip second string
while(*p)++p;
++p;
}
}
//
// try and match an equivalence class, NB only a single character can match
if(set_->cequivalents)
{
traits_inst.transform_primary(s1, s2);
for(i = 0; i < set_->cequivalents; ++i)
{
if(STR_COMP(s1, p) == 0)
return set_->isnot ? next : ++next;
// skip string
while(*p)++p;
++p;
}
}
}
if(traits_inst.is_class(col, set_->cclasses) == true)
return set_->isnot ? next : ++next;
return set_->isnot ? ++next : next;
}
template <class iterator, class Allocator>
class _priv_match_data
{
public:
typedef typename boost::detail::rebind_allocator<int, Allocator>::type i_alloc;
typedef typename boost::detail::rebind_allocator<iterator, Allocator>::type it_alloc;
typedef typename regex_iterator_traits<iterator>::difference_type difference_type;
match_results_base<iterator, Allocator> temp_match;
// failure stacks:
jstack<match_results_base<iterator, Allocator>, Allocator> matches;
jstack<iterator, Allocator> prev_pos;
jstack<const re_syntax_base*, Allocator> prev_record;
jstack<int, Allocator> prev_acc;
int* accumulators;
unsigned int caccumulators;
difference_type state_count;
difference_type max_state_count;
iterator* loop_starts;
_priv_match_data(const match_results_base<iterator, Allocator>&, iterator, iterator, std::size_t);
~_priv_match_data()
{
m_free();
}
void m_free();
void set_accumulator_size(unsigned int size);
int* get_accumulators()
{
return accumulators;
}
iterator* get_loop_starts()
{
return loop_starts;
}
void estimate_max_state_count(iterator a, iterator b, std::size_t states, std::random_access_iterator_tag*)
{
difference_type dist = boost::re_detail::distance(a,b);
states *= states;
difference_type lim = (std::numeric_limits<difference_type>::max)() - 1000 - states;
if(dist > (difference_type)(lim / states))
max_state_count = lim;
else
max_state_count = 1000 + states * dist;
}
void estimate_max_state_count(iterator a, iterator b, std::size_t states, void*)
{
// we don't know how long the sequence is:
max_state_count = BOOST_REGEX_MAX_STATE_COUNT;
}
};
template <class iterator, class Allocator>
_priv_match_data<iterator, Allocator>::_priv_match_data(const match_results_base<iterator, Allocator>& m, iterator a, iterator b, std::size_t states)
: temp_match(m), matches(64, m.allocator()), prev_pos(64, m.allocator()), prev_record(64, m.allocator())
{
typedef typename regex_iterator_traits<iterator>::iterator_category category;
accumulators = 0;
caccumulators = 0;
loop_starts = 0;
state_count = 0;
estimate_max_state_count(a, b, states, static_cast<category*>(0));
}
template <class iterator, class Allocator>
void _priv_match_data<iterator, Allocator>::set_accumulator_size(unsigned int size)
{
if(size > caccumulators)
{
m_free();
caccumulators = size;
accumulators = i_alloc(temp_match.allocator()).allocate(caccumulators);
BOOST_REGEX_NOEH_ASSERT(accumulators)
loop_starts = it_alloc(temp_match.allocator()).allocate(caccumulators);
BOOST_REGEX_NOEH_ASSERT(loop_starts)
for(unsigned i = 0; i < caccumulators; ++i)
new (loop_starts + i) iterator();
}
}
template <class iterator, class Allocator>
void _priv_match_data<iterator, Allocator>::m_free()
{
if(caccumulators)
{
i_alloc temp1(temp_match.allocator());
temp1.deallocate(accumulators, caccumulators);
for(unsigned i = 0; i < caccumulators; ++i)
::boost::re_detail::pointer_destroy(loop_starts + i);
it_alloc temp2(temp_match.allocator());
temp2.deallocate(loop_starts, caccumulators);
}
}
template <class charT, class traits, class Allocator>
struct access_t : public reg_expression<charT, traits, Allocator>
{
typedef typename is_byte<charT>::width_type width_type;
typedef reg_expression<charT, traits, Allocator> base_type;
typedef charT char_type;
typedef traits traits_type;
typedef Allocator alloc_type;
static int repeat_count(const base_type& b)
{ return base_type::repeat_count(b); }
static unsigned int restart_type(const base_type& b)
{ return base_type::restart_type(b); }
static const re_syntax_base* first(const base_type& b)
{ return base_type::first(b); }
static const unsigned char* get_map(const base_type& b)
{ return base_type::get_map(b); }
static std::size_t leading_length(const base_type& b)
{ return base_type::leading_length(b); }
static const kmp_info<charT>* get_kmp(const base_type& b)
{ return base_type::get_kmp(b); }
static bool can_start(char_type c, const unsigned char* _map, unsigned char mask)
{
return reg_expression<char_type, traits_type, alloc_type>::can_start(c, _map, mask, width_type());
}
};
#if defined(BOOST_REGEX_NO_TEMPLATE_SWITCH_MERGE)
//
// Ugly ugly hack,
// template don't merge if they contain switch statements so declare these
// templates in unnamed namespace (ie with internal linkage), each translation
// unit then gets its own local copy, it works seemlessly but bloats the app.
namespace{
#endif
template <class iterator, class Allocator, class charT, class traits, class Allocator2>
bool query_match_aux(iterator first,
iterator last,
match_results<iterator, Allocator>& m,
const reg_expression<charT, traits, Allocator2>& e,
unsigned flags,
_priv_match_data<iterator, Allocator>& pd,
iterator* restart)
{
typedef access_t<charT, traits, Allocator2> access;
if(e.flags() & regbase::failbit)
return false;
typedef typename traits::size_type traits_size_type;
typedef typename traits::uchar_type traits_uchar_type;
typedef typename is_byte<charT>::width_type width_type;
typedef typename re_detail::regex_iterator_traits<iterator>::difference_type difference_type;
// declare some local aliases to reduce pointer loads
// good optimising compilers should make this unnecessary!!
jstack<match_results_base<iterator, Allocator>, Allocator>& matches = pd.matches;
jstack<iterator, Allocator>& prev_pos = pd.prev_pos;
jstack<const re_syntax_base*, Allocator>& prev_record = pd.prev_record;
jstack<int, Allocator>& prev_acc = pd.prev_acc;
match_results_base<iterator, Allocator>& temp_match = pd.temp_match;
temp_match.set_first(first);
difference_type& state_count = pd.state_count;
const re_syntax_base* ptr = access::first(e);
bool match_found = false;
bool have_partial_match = false;
bool unwind_stack = false;
bool need_push_match = (e.mark_count() > 1);
int cur_acc = -1; // no active accumulator
pd.set_accumulator_size(access::repeat_count(e));
int* accumulators = pd.get_accumulators();
iterator* start_loop = pd.get_loop_starts();
int k; // for loops
bool icase = e.flags() & regbase::icase;
*restart = first;
iterator base = first;
const traits& traits_inst = e.get_traits();
// dwa 9/13/00 suppress incorrect MSVC warning - it claims this is never
// referenced
(void)traits_inst;
// prepare m for failure:
/*
if((flags & match_init) == 0)
{
m.init_fail(first, last);
} */
retry:
while(first != last)
{
jm_assert(ptr);
++state_count;
switch(ptr->type)
{
case syntax_element_match:
match_jump:
{
// match found, save then fallback in case we missed a
// longer one.
if((flags & match_not_null) && (first == temp_match[0].first))
goto failure;
if((flags & match_all) && (first != last))
goto failure;
temp_match.set_second(first);
m.maybe_assign(temp_match);
match_found = true;
if(((flags & match_any) && ((first == last) || !(flags & match_all))) || ((first == last) && (need_push_match == false)))
{
// either we don't care what we match or we've matched
// the whole string and can't match anything longer.
while(matches.empty() == false)
matches.pop();
while(prev_pos.empty() == false)
prev_pos.pop();
while(prev_record.empty() == false)
prev_record.pop();
while(prev_acc.empty() == false)
prev_acc.pop();
return true;
}
}
goto failure;
case syntax_element_startmark:
start_mark_jump:
if(static_cast<const re_brace*>(ptr)->index > 0)
{
temp_match.set_first(first, static_cast<const re_brace*>(ptr)->index);
}
else if(
(static_cast<const re_brace*>(ptr)->index == -1)
|| (static_cast<const re_brace*>(ptr)->index == -2)
)
{
matches.push(temp_match);
for(k = 0; k <= cur_acc; ++k)
prev_pos.push(start_loop[k]);
prev_pos.push(first);
prev_record.push(ptr);
for(k = 0; k <= cur_acc; ++k)
prev_acc.push(accumulators[k]);
prev_acc.push(cur_acc);
prev_acc.push(match_found);
match_found = false;
// skip next jump and fall through:
ptr = ptr->next.p;
}
ptr = ptr->next.p;
break;
case syntax_element_endmark:
end_mark_jump:
if(static_cast<const re_brace*>(ptr)->index > 0)
{
temp_match.set_second(first, static_cast<const re_brace*>(ptr)->index);
}
else if(
(static_cast<const re_brace*>(ptr)->index == -1)
|| (static_cast<const re_brace*>(ptr)->index == -2)
)
{
match_found = true;
unwind_stack = true;
goto failure;
}
ptr = ptr->next.p;
break;
case syntax_element_literal:
{
unsigned int len = static_cast<const re_literal*>(ptr)->length;
const charT* what = reinterpret_cast<const charT*>(static_cast<const re_literal*>(ptr) + 1);
//
// compare string with what we stored in
// our records:
for(unsigned int i = 0; i < len; ++i, ++first)
{
if((first == last) || (traits_inst.translate(*first, icase) != what[i]))
goto failure;
}
ptr = ptr->next.p;
break;
}
case syntax_element_start_line:
outer_line_check:
if(first == temp_match[0].first)
{
// we're at the start of the buffer
if(flags & match_prev_avail)
{
inner_line_check:
// check the previous value even though its before
// the start of our "buffer".
iterator t(first);
--t;
if(traits::is_separator(*t) && !((*t == '\r') && (*first == '\n')) )
{
ptr = ptr->next.p;
continue;
}
goto failure;
}
if((flags & match_not_bol) == 0)
{
ptr = ptr->next.p;
continue;
}
goto failure;
}
// we're in the middle of the string
goto inner_line_check;
case syntax_element_end_line:
// we're not yet at the end so *first is always valid:
if(traits::is_separator(*first))
{
if((first != base) || (flags & match_prev_avail))
{
// check that we're not in the middle of \r\n sequence
iterator t(first);
--t;
if((*t == '\r') && (*first == '\n'))
{
goto failure;
}
}
ptr = ptr->next.p;
continue;
}
goto failure;
case syntax_element_wild:
// anything except possibly NULL or \n:
if(traits::is_separator(*first))
{
if(flags & match_not_dot_newline)
goto failure;
ptr = ptr->next.p;
++first;
continue;
}
if(*first == charT(0))
{
if(flags & match_not_dot_null)
goto failure;
ptr = ptr->next.p;
++first;
continue;
}
ptr = ptr->next.p;
++first;
break;
case syntax_element_word_boundary:
{
// prev and this character must be opposites:
#if defined(BOOST_REGEX_USE_C_LOCALE) && defined(__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ < 95)
bool b = traits::is_class(*first, traits::char_class_word);
#else
bool b = traits_inst.is_class(*first, traits::char_class_word);
#endif
if((first == temp_match[0].first) && ((flags & match_prev_avail) == 0))
{
if(flags & match_not_bow)
b ^= true;
else
b ^= false;
}
else
{
--first;
b ^= traits_inst.is_class(*first, traits::char_class_word);
++first;
}
if(b)
{
ptr = ptr->next.p;
continue;
}
goto failure;
}
case syntax_element_within_word:
// both prev and this character must be traits::char_class_word:
if(traits_inst.is_class(*first, traits::char_class_word))
{
bool b;
if((first == temp_match[0].first) && ((flags & match_prev_avail) == 0))
b = false;
else
{
--first;
b = traits_inst.is_class(*first, traits::char_class_word);
++first;
}
if(b)
{
ptr = ptr->next.p;
continue;
}
}
goto failure;
case syntax_element_word_start:
if((first == temp_match[0].first) && ((flags & match_prev_avail) == 0))
{
// start of buffer:
if(flags & match_not_bow)
goto failure;
if(traits_inst.is_class(*first, traits::char_class_word))
{
ptr = ptr->next.p;
continue;
}
goto failure;
}
// otherwise inside buffer:
if(traits_inst.is_class(*first, traits::char_class_word))
{
iterator t(first);
--t;
if(traits_inst.is_class(*t, traits::char_class_word) == false)
{
ptr = ptr->next.p;
continue;
}
}
goto failure; // if we fall through to here then we've failed
case syntax_element_word_end:
if((first == temp_match[0].first) && ((flags & match_prev_avail) == 0))
goto failure; // start of buffer can't be end of word
// otherwise inside buffer:
if(traits_inst.is_class(*first, traits::char_class_word) == false)
{
iterator t(first);
--t;
if(traits_inst.is_class(*t, traits::char_class_word))
{
ptr = ptr->next.p;
continue;
}
}
goto failure; // if we fall through to here then we've failed
case syntax_element_buffer_start:
if((first != temp_match[0].first) || (flags & match_not_bob))
goto failure;
// OK match:
ptr = ptr->next.p;
break;
case syntax_element_buffer_end:
if((first != last) || (flags & match_not_eob))
goto failure;
// OK match:
ptr = ptr->next.p;
break;
case syntax_element_backref:
{
// compare with what we previously matched:
iterator i = temp_match[static_cast<const re_brace*>(ptr)->index].first;
iterator j = temp_match[static_cast<const re_brace*>(ptr)->index].second;
while(i != j)
{
if((first == last) || (traits_inst.translate(*first, icase) != traits_inst.translate(*i, icase)))
goto failure;
++i;
++first;
}
ptr = ptr->next.p;
break;
}
case syntax_element_long_set:
{
// let the traits class do the work:
iterator t = re_is_set_member(first, last, static_cast<const re_set_long*>(ptr), e);
if(t != first)
{
ptr = ptr->next.p;
first = t;
continue;
}
goto failure;
}
case syntax_element_set:
// lookup character in table:
if(static_cast<const re_set*>(ptr)->_map[(traits_uchar_type)traits_inst.translate(*first, icase)])
{
ptr = ptr->next.p;
++first;
continue;
}
goto failure;
case syntax_element_jump:
ptr = static_cast<const re_jump*>(ptr)->alt.p;
continue;
case syntax_element_alt:
{
// alt_jump:
if(access::can_start(*first, static_cast<const re_jump*>(ptr)->_map, (unsigned char)mask_take))
{
// we can take the first alternative,
// see if we need to push next alternative:
if(access::can_start(*first, static_cast<const re_jump*>(ptr)->_map, mask_skip))
{
if(need_push_match)
matches.push(temp_match);
for(k = 0; k <= cur_acc; ++k)
prev_pos.push(start_loop[k]);
prev_pos.push(first);
prev_record.push(ptr);
for(k = 0; k <= cur_acc; ++k)
prev_acc.push(accumulators[k]);
prev_acc.push(cur_acc);
}
ptr = ptr->next.p;
continue;
}
if(access::can_start(*first, static_cast<const re_jump*>(ptr)->_map, mask_skip))
{
ptr = static_cast<const re_jump*>(ptr)->alt.p;
continue;
}
goto failure; // neither option is possible
}
case syntax_element_rep:
{
// repeater_jump:
// if we're moving to a higher id (nested repeats etc)
// zero out our accumualtors:
if(cur_acc < static_cast<const re_repeat*>(ptr)->id)
{
cur_acc = static_cast<const re_repeat*>(ptr)->id;
accumulators[cur_acc] = 0;
start_loop[cur_acc] = first;
}
cur_acc = static_cast<const re_repeat*>(ptr)->id;
if(static_cast<const re_repeat*>(ptr)->leading)
*restart = first;
//charT c = traits_inst.translate(*first);
// first of all test for special case where this is last element,
// if that is the case then repeat as many times as possible,
// as long as the repeat is greedy:
if((static_cast<const re_repeat*>(ptr)->alt.p->type == syntax_element_match)
&& (static_cast<const re_repeat*>(ptr)->greedy == true))
{
// see if we can take the repeat:
if(((unsigned int)accumulators[cur_acc] < static_cast<const re_repeat*>(ptr)->max)
&& access::can_start(*first, static_cast<const re_repeat*>(ptr)->_map, mask_take))
{
// push terminating match as fallback:
if((unsigned int)accumulators[cur_acc] >= static_cast<const re_repeat*>(ptr)->min)
{
if((prev_record.empty() == false) && (prev_record.peek() == static_cast<const re_repeat*>(ptr)->alt.p))
{
// we already have the required fallback
// don't add any more, just update this one:
if(need_push_match)
matches.peek() = temp_match;
prev_pos.peek() = first;
}
else
{
if(need_push_match)
matches.push(temp_match);
prev_pos.push(first);
prev_record.push(static_cast<const re_repeat*>(ptr)->alt.p);
}
}
// move to next item in list:
if((first != start_loop[cur_acc]) || !accumulators[cur_acc])
{
++accumulators[cur_acc];
ptr = ptr->next.p;
start_loop[cur_acc] = first;
continue;
}
else if((unsigned int)accumulators[cur_acc] < static_cast<const re_repeat*>(ptr)->min)
{
// the repeat was null, and we haven't gone round min times yet,
// since all subsequent repeats will be null as well, just update
// our repeat count and skip out.
accumulators[cur_acc] = static_cast<const re_repeat*>(ptr)->min;
ptr = static_cast<const re_repeat*>(ptr)->alt.p;
continue;
}
goto failure;
}
// see if we can skip the repeat:
if(((unsigned int)accumulators[cur_acc] >= static_cast<const re_repeat*>(ptr)->min)
&& access::can_start(*first, static_cast<const re_repeat*>(ptr)->_map, mask_skip))
{
ptr = static_cast<const re_repeat*>(ptr)->alt.p;
continue;
}
// otherwise fail:
goto failure;
}
// OK if we get to here then the repeat is either non-terminal or non-greedy,
// see if we can skip the repeat:
if(((unsigned int)accumulators[cur_acc] >= static_cast<const re_repeat*>(ptr)->min)
&& access::can_start(*first, static_cast<const re_repeat*>(ptr)->_map, mask_skip))
{
// see if we can push failure info:
if(((unsigned int)accumulators[cur_acc] < static_cast<const re_repeat*>(ptr)->max)
&& access::can_start(*first, static_cast<const re_repeat*>(ptr)->_map, mask_take))
{
// check to see if the last loop matched a NULL string
// if so then we really don't want to loop again:
if(((unsigned int)accumulators[cur_acc] == static_cast<const re_repeat*>(ptr)->min)
|| (first != start_loop[cur_acc]))
{
if(need_push_match)
matches.push(temp_match);
prev_pos.push(first);
prev_record.push(ptr);
for(k = 0; k <= cur_acc; ++k)
prev_acc.push(accumulators[k]);
// for non-greedy repeats save whether we have a match already:
if(static_cast<const re_repeat*>(ptr)->greedy == false)
{
prev_acc.push(match_found);
match_found = false;
}
}
}
ptr = static_cast<const re_repeat*>(ptr)->alt.p;
continue;
}
// otherwise see if we can take the repeat:
if(((unsigned int)accumulators[cur_acc] < static_cast<const re_repeat*>(ptr)->max)
&& access::can_start(*first, static_cast<const re_repeat*>(ptr)->_map, mask_take) &&
((first != start_loop[cur_acc]) || !accumulators[cur_acc]))
{
// move to next item in list:
++accumulators[cur_acc];
ptr = ptr->next.p;
start_loop[cur_acc] = first;
continue;
}
else if((first == start_loop[cur_acc]) && accumulators[cur_acc] && ((unsigned int)accumulators[cur_acc] < static_cast<const re_repeat*>(ptr)->min))
{
// the repeat was null, and we haven't gone round min times yet,
// since all subsequent repeats will be null as well, just update
// our repeat count and skip out.
accumulators[cur_acc] = static_cast<const re_repeat*>(ptr)->min;
ptr = static_cast<const re_repeat*>(ptr)->alt.p;
continue;
}
// if we get here then neither option is allowed so fail:
goto failure;
}
case syntax_element_combining:
if(traits_inst.is_combining(traits_inst.translate(*first, icase)))
goto failure;
++first;
while((first != last) && traits_inst.is_combining(traits_inst.translate(*first, icase)))++first;
ptr = ptr->next.p;
continue;
case syntax_element_soft_buffer_end:
{
if(flags & match_not_eob)
goto failure;
iterator p(first);
while((p != last) && traits_inst.is_separator(traits_inst.translate(*p, icase)))++p;
if(p != last)
goto failure;
ptr = ptr->next.p;
continue;
}
case syntax_element_restart_continue:
if(first != temp_match[-1].first)
goto failure;
ptr = ptr->next.p;
continue;
default:
jm_assert(0); // should never get to here!!
return false;
}
}
//
// if we get to here then we've run out of characters to match against,
// we could however still have non-character regex items left
if((ptr->can_be_null == 0) && ((flags & match_partial) == 0))
goto failure;
while(true)
{
jm_assert(ptr);
++state_count;
switch(ptr->type)
{
case syntax_element_match:
goto match_jump;
case syntax_element_startmark:
goto start_mark_jump;
case syntax_element_endmark:
goto end_mark_jump;
case syntax_element_start_line:
goto outer_line_check;
case syntax_element_end_line:
// we're at the end so *first is never valid:
if((flags & match_not_eol) == 0)
{
ptr = ptr->next.p;
continue;
}
goto failure;
case syntax_element_word_boundary:
case syntax_element_word_end:
if(((flags & match_not_eow) == 0) && (first != temp_match[0].first))
{
iterator t(first);
--t;
if(traits_inst.is_class(*t, traits::char_class_word))
{
ptr = ptr->next.p;
continue;
}
}
goto failure;
case syntax_element_buffer_end:
case syntax_element_soft_buffer_end:
if(flags & match_not_eob)
goto failure;
// OK match:
ptr = ptr->next.p;
break;
case syntax_element_jump:
ptr = static_cast<const re_jump*>(ptr)->alt.p;
continue;
case syntax_element_alt:
if(ptr->can_be_null & mask_take)
{
// we can test the first alternative,
// see if we need to push next alternative:
if(ptr->can_be_null & mask_skip)
{
if(need_push_match)
matches.push(temp_match);
for(k = 0; k <= cur_acc; ++k)
prev_pos.push(start_loop[k]);
prev_pos.push(first);
prev_record.push(ptr);
for(k = 0; k <= cur_acc; ++k)
prev_acc.push(accumulators[k]);
prev_acc.push(cur_acc);
}
ptr = ptr->next.p;
continue;
}
if(ptr->can_be_null & mask_skip)
{
ptr = static_cast<const re_jump*>(ptr)->alt.p;
continue;
}
goto failure; // neither option is possible
case syntax_element_rep:
// if we're moving to a higher id (nested repeats etc)
// zero out our accumualtors:
if(cur_acc < static_cast<const re_repeat*>(ptr)->id)
{
cur_acc = static_cast<const re_repeat*>(ptr)->id;
accumulators[cur_acc] = 0;
start_loop[cur_acc] = first;
}
cur_acc = static_cast<const re_repeat*>(ptr)->id;
// see if we can skip the repeat:
if(((unsigned int)accumulators[cur_acc] >= static_cast<const re_repeat*>(ptr)->min)
&& ((ptr->can_be_null & mask_skip) || (flags & match_partial)))
{
// don't push failure info, there's no point:
ptr = static_cast<const re_repeat*>(ptr)->alt.p;
continue;
}
// otherwise see if we can take the repeat:
if(((unsigned int)accumulators[cur_acc] < static_cast<const re_repeat*>(ptr)->max)
&& (((ptr->can_be_null & (mask_take | mask_skip)) == (mask_take | mask_skip))) || (flags & match_partial))
{
// move to next item in list:
++accumulators[cur_acc];
ptr = ptr->next.p;
start_loop[cur_acc] = first;
continue;
}
// if we get here then neither option is allowed so fail:
goto failure;
case syntax_element_restart_continue:
if(first != temp_match[-1].first)
goto failure;
ptr = ptr->next.p;
continue;
case syntax_element_backref:
if(temp_match[static_cast<const re_brace*>(ptr)->index].first
!= temp_match[static_cast<const re_brace*>(ptr)->index].second)
goto failure;
ptr = ptr->next.p;
continue;
default:
goto failure;
}
}
failure:
//
// check to see if we've been searching too many states:
//
if(state_count >= pd.max_state_count)
{
#ifndef BOOST_NO_EXCEPTIONS
throw std::runtime_error("Max regex search depth exceeded.");
#else
while(matches.empty() == false)
matches.pop();
while(prev_pos.empty() == false)
prev_pos.pop();
while(prev_record.empty() == false)
prev_record.pop();
while(prev_acc.empty() == false)
prev_acc.pop();
return false;
#endif
}
//
// check for possible partial match:
//
if((flags & match_partial)
&& !match_found // no full match already
&& (base != first) // some charcters have been consumed
&& (first == last)) // end of input has been reached
{
have_partial_match = true;
temp_match.set_second(first, 0, false);
m.maybe_assign(temp_match);
}
if(prev_record.empty() == false)
{
ptr = prev_record.peek();
switch(ptr->type)
{
case syntax_element_alt:
// get next alternative:
ptr = static_cast<const re_jump*>(ptr)->alt.p;
if(need_push_match)
matches.pop(temp_match);
prev_acc.pop(cur_acc);
for(k = cur_acc; k >= 0; --k)
prev_acc.pop(accumulators[k]);
prev_pos.pop(first);
for(k = cur_acc; k >= 0; --k)
prev_pos.pop(start_loop[k]);
prev_record.pop();
if(unwind_stack) goto failure; // unwinding forward assert
goto retry;
case syntax_element_rep:
{
// we're doing least number of repeats first,
// increment count and repeat again:
bool saved_matched = match_found;
if(need_push_match)
matches.pop(temp_match);
prev_pos.pop(first);
cur_acc = static_cast<const re_repeat*>(ptr)->id;
if(static_cast<const re_repeat*>(ptr)->greedy == false)
{
saved_matched = prev_acc.peek();
prev_acc.pop();
}
for(k = cur_acc; k >= 0; --k)
prev_acc.pop(accumulators[k]);
prev_record.pop();
if(unwind_stack) goto failure; // unwinding forward assert
if((unsigned int)++accumulators[cur_acc] > static_cast<const re_repeat*>(ptr)->max)
goto failure; // repetions exhausted.
//
// if the repeat is non-greedy, and we found a match then fail again:
if((static_cast<const re_repeat*>(ptr)->greedy == false) && (match_found == true))
{
goto failure;
}
else if (match_found == false)
match_found = saved_matched;
ptr = ptr->next.p;
start_loop[cur_acc] = first;
goto retry;
}
case syntax_element_startmark:
{
bool saved_matched = match_found;
matches.pop(temp_match);
match_found = prev_acc.peek();
prev_acc.pop();
prev_acc.pop(cur_acc);
for(k = cur_acc; k >= 0; --k)
prev_acc.pop(accumulators[k]);
prev_pos.pop(first);
for(k = cur_acc; k >= 0; --k)
prev_pos.pop(start_loop[k]);
prev_record.pop();
unwind_stack = false;
if(static_cast<const re_brace*>(ptr)->index == -1)
{
if (saved_matched == false)
goto failure;
ptr = static_cast<const re_jump*>(ptr->next.p)->alt.p->next.p;
goto retry;
}
if(static_cast<const re_brace*>(ptr)->index == -2)
{
if (saved_matched == true)
goto failure;
ptr = static_cast<const re_jump*>(ptr->next.p)->alt.p->next.p;
goto retry;
}
else goto failure;
}
case syntax_element_match:
if(need_push_match)
matches.pop(temp_match);
prev_pos.pop(first);
prev_record.pop();
if(unwind_stack) goto failure; // unwinding forward assert
goto retry;
default:
jm_assert(0);
// mustn't get here!!
}
}
if(match_found || have_partial_match)
{
pd.state_count = 0;
return true;
}
// if we get to here then everything has failed
// and no match was found:
return false;
}
#if defined(BOOST_REGEX_NO_TEMPLATE_SWITCH_MERGE)
} // namespace
#endif
template <class iterator>
void _skip_and_inc(unsigned int& clines, iterator& last_line, iterator& first, const iterator last)
{
while(first != last)
{
if(*first == '\n')
{
last_line = ++first;
++clines;
}
else
++first;
}
}
template <class iterator>
void _skip_and_dec(unsigned int& clines, iterator& last_line, iterator& first, iterator base, std::size_t len)
{
bool need_line = false;
for(std::size_t i = 0; i < len; ++i)
{
--first;
if(*first == '\n')
{
need_line = true;
--clines;
}
}
if(need_line)
{
last_line = first;
if(last_line != base)
--last_line;
else
return;
while((last_line != base) && (*last_line != '\n'))
--last_line;
if(*last_line == '\n')
++last_line;
}
}
template <class iterator>
inline void _inc_one(unsigned int& clines, iterator& last_line, iterator& first)
{
if(*first == '\n')
{
last_line = ++first;
++clines;
}
else
++first;
}
template <class iterator, class Allocator>
struct grep_search_predicate
{
match_results<iterator, Allocator>* pm;
grep_search_predicate(match_results<iterator, Allocator>* p) : pm(p) {}
bool operator()(const match_results<iterator, Allocator>& m)
{
*pm = static_cast<const match_results_base<iterator, Allocator>&>(m);
return false;
}
};
#if !defined(BOOST_NO_EXPLICIT_FUNCTION_TEMPLATE_ARGUMENTS) && !defined(BOOST_NO_FUNCTION_TEMPLATE_ORDERING)
template <class iterator, class Allocator>
inline const match_results_base<iterator, Allocator>& grep_out_type(const grep_search_predicate<iterator, Allocator>& o, const Allocator&)
{
return *(o.pm);
}
#endif
template <class T, class Allocator>
inline const Allocator& grep_out_type(const T&, const Allocator& a)
{
return a;
}
#if defined(BOOST_REGEX_NO_TEMPLATE_SWITCH_MERGE)
//
// Ugly ugly hack,
// template don't merge if they contain switch statements so declare these
// templates in unnamed namespace (ie with internal linkage), each translation
// unit then gets its own local copy, it works seemlessly but bloats the app.
namespace{
#endif
//
// reg_grep2:
// find all non-overlapping matches within the sequence first last:
//
template <class Predicate, class I, class charT, class traits, class A, class A2>
unsigned int reg_grep2(Predicate foo, I first, I last, const reg_expression<charT, traits, A>& e, unsigned flags, A2 a)
{
typedef access_t<charT, traits, A> access;
if(e.flags() & regbase::failbit)
return 0;
typedef typename traits::size_type traits_size_type;
typedef typename traits::uchar_type traits_uchar_type;
typedef typename is_byte<charT>::width_type width_type;
match_results<I, A2> m(grep_out_type(foo, a));
I restart;
m.set_size(e.mark_count(), first, last);
m.set_line(1, first);
m.set_base(first);
unsigned int clines = 1;
unsigned int cmatches = 0;
I last_line = first;
I next_base;
I base = first;
bool need_init;
bool leading_match = false;
const traits& traits_inst = e.get_traits();
// dwa 9/13/00 suppress incorrect MSVC warning - it claims this is never
// referenced
(void)traits_inst;
flags |= match_init;
_priv_match_data<I, A2> pd(m, first, last, e.size());
const unsigned char* _map = access::get_map(e);
unsigned int type;
if(first == last)
{
// special case, only test if can_be_null,
// don't dereference any pointers!!
if(access::first(e)->can_be_null)
{
if(query_match_aux(first, last, m, e, flags, pd, &restart))
{
foo(m);
++cmatches;
}
}
return cmatches;
}
// try one time whatever:
if( access::can_start(*first, _map, (unsigned char)mask_any) )
{
if(query_match_aux(first, last, m, e, flags, pd, &restart))
{
++cmatches;
leading_match = true;
if(foo(m) == false)
return cmatches;
if(m[0].second == last)
return cmatches;
// update to end of what matched
// trying to match again with match_not_null set if this
// is a null match...
need_init = true;
if(first == m[0].second)
{
next_base = m[0].second;
pd.temp_match.init_fail(next_base, last);
m.init_fail(next_base, last);
if(query_match_aux(first, last, m, e, flags | match_not_null, pd, &restart))
{
++cmatches;
if(foo(m) == false)
return cmatches;
}
else
{
need_init = false;
leading_match = false;
for(unsigned int i = 0; (restart != first) && (i < access::leading_length(e)); ++i, --restart)
{} // dwa 10/20/2000 - warning suppression for MWCW
if(restart != last)
++restart;
_skip_and_inc(clines, last_line, first, restart);
}
}
if(need_init)
{
_skip_and_inc(clines, last_line, first, m[0].second);
next_base = m[0].second;
pd.temp_match.init_fail(next_base, last);
m.init_fail(next_base, last);
}
}
else
{
for(unsigned int i = 0; (restart != first) && (i < access::leading_length(e)); ++i, --restart)
{} // dwa 10/20/2000 - warning suppression for MWCW
if(restart != last)
++restart;
_skip_and_inc(clines, last_line, first, restart);
}
}
else
_inc_one(clines, last_line, first);
flags |= match_prev_avail | match_not_bob;
// depending on what the first record is we may be able to
// optimise the search:
type = (flags & match_continuous) ?
static_cast<unsigned int>(regbase::restart_continue)
: static_cast<unsigned int>(access::restart_type(e));
if(type == regbase::restart_buf)
return cmatches;
switch(type)
{
case regbase::restart_lit:
case regbase::restart_fixed_lit:
{
const kmp_info<charT>* info = access::get_kmp(e);
int len = info->len;
const charT* x = info->pstr;
int j = 0;
bool icase = e.flags() & regbase::icase;
while (first != last)
{
while((j > -1) && (x[j] != traits_inst.translate(*first, icase)))
j = info->kmp_next[j];
_inc_one(clines, last_line, first);
++j;
if(j >= len)
{
if(type == regbase::restart_fixed_lit)
{
_skip_and_dec(clines, last_line, first, base, j);
restart = first;
std::advance(restart, len);
m.set_first(first);
m.set_second(restart);
m.set_line(clines, last_line);
++cmatches;
if(foo(m) == false)
return cmatches;
if(m[0].second == last)
return cmatches;
_skip_and_inc(clines, last_line, first, restart);
next_base = m[0].second;
pd.temp_match.init_fail(next_base, last);
m.init_fail(next_base, last);
j = 0;
}
else
{
restart = first;
_skip_and_dec(clines, last_line, first, base, j);
if(query_match_aux(first, last, m, e, flags, pd, &restart))
{
m.set_line(clines, last_line);
++cmatches;
if(foo(m) == false)
return cmatches;
if(m[0].second == last)
return cmatches;
// update to end of what matched
_skip_and_inc(clines, last_line, first, m[0].second);
next_base = m[0].second;
pd.temp_match.init_fail(next_base, last);
m.init_fail(next_base, last);
j = 0;
}
else
{
for(int k = 0; (restart != first) && (k < j); ++k, --restart)
{} // dwa 10/20/2000 - warning suppression for MWCW
if(restart != last)
++restart;
_skip_and_inc(clines, last_line, first, restart);
j = 0; //we could do better than this...
}
}
}
}
break;
}
case regbase::restart_any:
{
while(first != last)
{
if( access::can_start(*first, _map, (unsigned char)mask_any) )
{
if(query_match_aux(first, last, m, e, flags, pd, &restart))
{
m.set_line(clines, last_line);
++cmatches;
if(foo(m) == false)
return cmatches;
if(m[0].second == last)
return cmatches;
// update to end of what matched
// trying to match again with match_not_null set if this
// is a null match...
need_init = true;
if(first == m[0].second)
{
next_base = m[0].second;
pd.temp_match.init_fail(next_base, last);
m.init_fail(next_base, last);
if(query_match_aux(first, last, m, e, flags | match_not_null, pd, &restart))
{
m.set_line(clines, last_line);
++cmatches;
if(foo(m) == false)
return cmatches;
}
else
{
need_init = false;
for(unsigned int i = 0; (restart != first) && (i < access::leading_length(e)); ++i, --restart)
{} // dwa 10/20/2000 - warning suppression for MWCW
if(restart != last)
++restart;
_skip_and_inc(clines, last_line, first, restart);
}
}
if(need_init)
{
_skip_and_inc(clines, last_line, first, m[0].second);
next_base = m[0].second;
pd.temp_match.init_fail(next_base, last);
m.init_fail(next_base, last);
}
continue;
}
else
{
for(unsigned int i = 0; (restart != first) && (i < access::leading_length(e)); ++i, --restart)
{} // dwa 10/20/2000 - warning suppression for MWCW
if(restart != last)
++restart;
_skip_and_inc(clines, last_line, first, restart);
}
}
else
_inc_one(clines, last_line, first);
}
}
break;
case regbase::restart_word:
{
// do search optimised for word starts:
while(first != last)
{
--first;
if(*first == '\n')
--clines;
// skip the word characters:
while((first != last) && traits_inst.is_class(*first, traits::char_class_word))
++first;
// now skip the white space:
while((first != last) && (traits_inst.is_class(*first, traits::char_class_word) == false))
{
#ifdef __GNUC__
//
// hack to work around gcc optimisation bug
// just expand the contents of _inc_one here:
if(*first == '\n')
{
last_line = ++first;
++clines;
}
else
++first;
#else
_inc_one(clines, last_line, first);
#endif
}
if(first == last)
break;
if( access::can_start(*first, _map, (unsigned char)mask_any) )
{
if(query_match_aux(first, last, m, e, flags, pd, &restart))
{
m.set_line(clines, last_line);
++cmatches;
if(foo(m) == false)
return cmatches;
if(m[0].second == last)
return cmatches;
// update to end of what matched
// trying to match again with match_not_null set if this
// is a null match...
need_init = true;
if(first == m[0].second)
{
next_base = m[0].second;
pd.temp_match.init_fail(next_base, last);
m.init_fail(next_base, last);
if(query_match_aux(first, last, m, e, flags | match_not_null, pd, &restart))
{
m.set_line(clines, last_line);
++cmatches;
if(foo(m) == false)
return cmatches;
}
else
{
need_init = false;
for(unsigned int i = 0; (restart != first) && (i < access::leading_length(e)); ++i, --restart)
{} // dwa 10/20/2000 - warning suppression for MWCW
if(restart != last)
++restart;
_skip_and_inc(clines, last_line, first, restart);
}
}
if(need_init)
{
_skip_and_inc(clines, last_line, first, m[0].second);
next_base = m[0].second;
pd.temp_match.init_fail(next_base, last);
m.init_fail(next_base, last);
}
}
else
{
for(unsigned int i = 0; (restart != first) && (i < access::leading_length(e)); ++i, --restart)
{} // dwa 10/20/2000 - warning suppression for MWCW
if(restart != last)
++restart;
_skip_and_inc(clines, last_line, first, restart);
}
}
else
_inc_one(clines, last_line, first);
}
}
break;
case regbase::restart_line:
{
// do search optimised for line starts:
while(first != last)
{
// find first charcter after a line break:
--first;
if(*first == '\n')
--clines;
while((first != last) && (*first != '\n'))
++first;
if(first == last)
break;
++first;
if(first == last)
break;
++clines;
last_line = first;
if( access::can_start(*first, _map, (unsigned char)mask_any) )
{
if(query_match_aux(first, last, m, e, flags, pd, &restart))
{
m.set_line(clines, last_line);
++cmatches;
if(foo(m) == false)
return cmatches;
if(m[0].second == last)
return cmatches;
// update to end of what matched
// trying to match again with match_not_null set if this
// is a null match...
need_init = true;
if(first == m[0].second)
{
next_base = m[0].second;
pd.temp_match.init_fail(next_base, last);
m.init_fail(next_base, last);
if(query_match_aux(first, last, m, e, flags | match_not_null, pd, &restart))
{
m.set_line(clines, last_line);
++cmatches;
if(foo(m) == false)
return cmatches;
}
else
{
need_init = false;
for(unsigned int i = 0; (restart != first) && (i < access::leading_length(e)); ++i, --restart)
{} // dwa 10/20/2000 - warning suppression for MWCW
if(restart != last)
++restart;
_skip_and_inc(clines, last_line, first, restart);
}
}
if(need_init)
{
_skip_and_inc(clines, last_line, first, m[0].second);
next_base = m[0].second;
pd.temp_match.init_fail(next_base, last);
m.init_fail(next_base, last);
}
}
else
{
for(unsigned int i = 0; (restart != first) && (i < access::leading_length(e)); ++i, --restart)
{} // dwa 10/20/2000 - warning suppression for MWCW
if(restart != last)
++restart;
_skip_and_inc(clines, last_line, first, restart);
}
}
else
_inc_one(clines, last_line, first);
}
}
break;
case regbase::restart_continue:
{
if(!leading_match)
return cmatches;
while(first != last)
{
if( access::can_start(*first, _map, (unsigned char)mask_any) )
{
if(query_match_aux(first, last, m, e, flags, pd, &restart))
{
m.set_line(clines, last_line);
++cmatches;
if(foo(m) == false)
return cmatches;
if(m[0].second == last)
return cmatches;
// update to end of what matched
// trying to match again with match_not_null set if this
// is a null match...
if(first == m[0].second)
{
next_base = m[0].second;
pd.temp_match.init_fail(next_base, last);
m.init_fail(next_base, last);
if(query_match_aux(first, last, m, e, flags | match_not_null, pd, &restart))
{
m.set_line(clines, last_line);
++cmatches;
if(foo(m) == false)
return cmatches;
}
else
return cmatches; // can't continue from null match
}
_skip_and_inc(clines, last_line, first, m[0].second);
next_base = m[0].second;
pd.temp_match.init_fail(next_base, last);
m.init_fail(next_base, last);
continue;
}
}
return cmatches;
}
}
break;
}
// finally check trailing null string:
if(access::first(e)->can_be_null)
{
if(query_match_aux(first, last, m, e, flags, pd, &restart))
{
m.set_line(clines, last_line);
++cmatches;
if(foo(m) == false)
return cmatches;
}
}
return cmatches;
}
#if defined(BOOST_REGEX_NO_TEMPLATE_SWITCH_MERGE)
} // namespace {anon}
#endif
} // namespace re_detail
//
// proc regex_match
// returns true if the specified regular expression matches
// the whole of the input. Fills in what matched in m.
//
template <class iterator, class Allocator, class charT, class traits, class Allocator2>
bool regex_match(iterator first, iterator last, match_results<iterator, Allocator>& m, const reg_expression<charT, traits, Allocator2>& e, unsigned flags = match_default)
{
// prepare m for failure:
if((flags & match_init) == 0)
{
m.set_size(e.mark_count(), first, last);
m.set_base(first);
m.set_line(1, first);
}
flags |= match_all; // must match all of input.
re_detail::_priv_match_data<iterator, Allocator> pd(m, first, last, e.size());
iterator restart;
bool result = re_detail::query_match_aux(first, last, m, e, flags, pd, &restart);
return result;
}
template <class iterator, class charT, class traits, class Allocator2>
bool regex_match(iterator first, iterator last, const reg_expression<charT, traits, Allocator2>& e, unsigned flags = match_default)
{
match_results<iterator> m;
return regex_match(first, last, m, e, flags);
}
//
// query_match convenience interfaces:
#ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
//
// this isn't really a partial specialisation, but template function
// overloading - if the compiler doesn't support partial specialisation
// then it really won't support this either:
template <class charT, class Allocator, class traits, class Allocator2>
inline bool regex_match(const charT* str,
match_results<const charT*, Allocator>& m,
const reg_expression<charT, traits, Allocator2>& e,
unsigned flags = match_default)
{
return regex_match(str, str + traits::length(str), m, e, flags);
}
template <class ST, class SA, class Allocator, class charT, class traits, class Allocator2>
inline bool regex_match(const std::basic_string<charT, ST, SA>& s,
match_results<typename std::basic_string<charT, ST, SA>::const_iterator, Allocator>& m,
const reg_expression<charT, traits, Allocator2>& e,
unsigned flags = match_default)
{
return regex_match(s.begin(), s.end(), m, e, flags);
}
template <class charT, class traits, class Allocator2>
inline bool regex_match(const charT* str,
const reg_expression<charT, traits, Allocator2>& e,
unsigned flags = match_default)
{
match_results<const charT*> m;
return regex_match(str, str + traits::length(str), m, e, flags);
}
template <class ST, class SA, class charT, class traits, class Allocator2>
inline bool regex_match(const std::basic_string<charT, ST, SA>& s,
const reg_expression<charT, traits, Allocator2>& e,
unsigned flags = match_default)
{
typedef typename std::basic_string<charT, ST, SA>::const_iterator iterator;
match_results<iterator> m;
return regex_match(s.begin(), s.end(), m, e, flags);
}
#else // partial ordering
inline bool regex_match(const char* str,
cmatch& m,
const regex& e,
unsigned flags = match_default)
{
return regex_match(str, str + regex::traits_type::length(str), m, e, flags);
}
inline bool regex_match(const char* str,
const regex& e,
unsigned flags = match_default)
{
match_results<const char*> m;
return regex_match(str, str + regex::traits_type::length(str), m, e, flags);
}
#ifndef BOOST_NO_WREGEX
inline bool regex_match(const wchar_t* str,
wcmatch& m,
const wregex& e,
unsigned flags = match_default)
{
return regex_match(str, str + wregex::traits_type::length(str), m, e, flags);
}
inline bool regex_match(const wchar_t* str,
const wregex& e,
unsigned flags = match_default)
{
match_results<const wchar_t*> m;
return regex_match(str, str + wregex::traits_type::length(str), m, e, flags);
}
#endif
inline bool regex_match(const std::string& s,
match_results<std::string::const_iterator, regex::allocator_type>& m,
const regex& e,
unsigned flags = match_default)
{
return regex_match(s.begin(), s.end(), m, e, flags);
}
inline bool regex_match(const std::string& s,
const regex& e,
unsigned flags = match_default)
{
match_results<std::string::const_iterator, regex::allocator_type> m;
return regex_match(s.begin(), s.end(), m, e, flags);
}
#if !defined(BOOST_NO_WREGEX)
inline bool regex_match(const std::basic_string<wchar_t>& s,
match_results<std::basic_string<wchar_t>::const_iterator, wregex::allocator_type>& m,
const wregex& e,
unsigned flags = match_default)
{
return regex_match(s.begin(), s.end(), m, e, flags);
}
inline bool regex_match(const std::basic_string<wchar_t>& s,
const wregex& e,
unsigned flags = match_default)
{
match_results<std::basic_string<wchar_t>::const_iterator, wregex::allocator_type> m;
return regex_match(s.begin(), s.end(), m, e, flags);
}
#endif
#endif
template <class iterator, class Allocator, class charT, class traits, class Allocator2>
bool regex_search(iterator first, iterator last, match_results<iterator, Allocator>& m, const reg_expression<charT, traits, Allocator2>& e, unsigned flags = match_default)
{
if(e.flags() & regbase::failbit)
return false;
typedef typename traits::size_type traits_size_type;
typedef typename traits::uchar_type traits_uchar_type;
return re_detail::reg_grep2(re_detail::grep_search_predicate<iterator, Allocator>(&m), first, last, e, flags, m.allocator());
}
//
// regex_search convenience interfaces:
#ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
//
// this isn't really a partial specialisation, but template function
// overloading - if the compiler doesn't support partial specialisation
// then it really won't support this either:
template <class charT, class Allocator, class traits, class Allocator2>
inline bool regex_search(const charT* str,
match_results<const charT*, Allocator>& m,
const reg_expression<charT, traits, Allocator2>& e,
unsigned flags = match_default)
{
return regex_search(str, str + traits::length(str), m, e, flags);
}
template <class ST, class SA, class Allocator, class charT, class traits, class Allocator2>
inline bool regex_search(const std::basic_string<charT, ST, SA>& s,
match_results<typename std::basic_string<charT, ST, SA>::const_iterator, Allocator>& m,
const reg_expression<charT, traits, Allocator2>& e,
unsigned flags = match_default)
{
return regex_search(s.begin(), s.end(), m, e, flags);
}
#else // partial specialisation
inline bool regex_search(const char* str,
cmatch& m,
const regex& e,
unsigned flags = match_default)
{
return regex_search(str, str + regex::traits_type::length(str), m, e, flags);
}
#ifndef BOOST_NO_WREGEX
inline bool regex_search(const wchar_t* str,
wcmatch& m,
const wregex& e,
unsigned flags = match_default)
{
return regex_search(str, str + wregex::traits_type::length(str), m, e, flags);
}
#endif
inline bool regex_search(const std::string& s,
match_results<std::string::const_iterator, regex::allocator_type>& m,
const regex& e,
unsigned flags = match_default)
{
return regex_search(s.begin(), s.end(), m, e, flags);
}
#if !defined(BOOST_NO_WREGEX)
inline bool regex_search(const std::basic_string<wchar_t>& s,
match_results<std::basic_string<wchar_t>::const_iterator, wregex::allocator_type>& m,
const wregex& e,
unsigned flags = match_default)
{
return regex_search(s.begin(), s.end(), m, e, flags);
}
#endif
#endif
//
// regex_grep:
// find all non-overlapping matches within the sequence first last:
//
template <class Predicate, class iterator, class charT, class traits, class Allocator>
inline unsigned int regex_grep(Predicate foo, iterator first, iterator last, const reg_expression<charT, traits, Allocator>& e, unsigned flags = match_default)
{
return re_detail::reg_grep2(foo, first, last, e, flags, e.allocator());
}
//
// regex_grep convenience interfaces:
#ifndef BOOST_NO_FUNCTION_TEMPLATE_ORDERING
//
// this isn't really a partial specialisation, but template function
// overloading - if the compiler doesn't support partial specialisation
// then it really won't support this either:
template <class Predicate, class charT, class Allocator, class traits>
inline unsigned int regex_grep(Predicate foo, const charT* str,
const reg_expression<charT, traits, Allocator>& e,
unsigned flags = match_default)
{
return regex_grep(foo, str, str + traits::length(str), e, flags);
}
template <class Predicate, class ST, class SA, class Allocator, class charT, class traits>
inline unsigned int regex_grep(Predicate foo, const std::basic_string<charT, ST, SA>& s,
const reg_expression<charT, traits, Allocator>& e,
unsigned flags = match_default)
{
return regex_grep(foo, s.begin(), s.end(), e, flags);
}
#else // partial specialisation
inline unsigned int regex_grep(bool (*foo)(const cmatch&), const char* str,
const regex& e,
unsigned flags = match_default)
{
return regex_grep(foo, str, str + regex::traits_type::length(str), e, flags);
}
#ifndef BOOST_NO_WREGEX
inline unsigned int regex_grep(bool (*foo)(const wcmatch&), const wchar_t* str,
const wregex& e,
unsigned flags = match_default)
{
return regex_grep(foo, str, str + wregex::traits_type::length(str), e, flags);
}
#endif
inline unsigned int regex_grep(bool (*foo)(const match_results<std::string::const_iterator, regex::allocator_type>&), const std::string& s,
const regex& e,
unsigned flags = match_default)
{
return regex_grep(foo, s.begin(), s.end(), e, flags);
}
#if !defined(BOOST_NO_WREGEX)
inline unsigned int regex_grep(bool (*foo)(const match_results<std::basic_string<wchar_t>::const_iterator, wregex::allocator_type>&),
const std::basic_string<wchar_t>& s,
const wregex& e,
unsigned flags = match_default)
{
return regex_grep(foo, s.begin(), s.end(), e, flags);
}
#endif
#endif
#ifdef __BORLANDC__
#pragma option pop
#endif
} // namespace boost
#endif // BOOST_REGEX_MATCH_HPP