boost/graph/isomorphism.hpp
// Copyright (C) 2001 Jeremy Siek, Douglas Gregor, Brian Osman
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GRAPH_ISOMORPHISM_HPP
#define BOOST_GRAPH_ISOMORPHISM_HPP
#include <utility>
#include <vector>
#include <iterator>
#include <algorithm>
#include <boost/config.hpp>
#include <boost/assert.hpp>
#include <boost/smart_ptr.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/detail/algorithm.hpp>
#include <boost/unordered_map.hpp>
#include <boost/unordered/unordered_flat_map.hpp>
#include <boost/pending/indirect_cmp.hpp> // for make_indirect_pmap
#include <boost/concept/assert.hpp>
#ifndef BOOST_GRAPH_ITERATION_MACROS_HPP
#define BOOST_ISO_INCLUDED_ITER_MACROS // local macro, see bottom of file
#include <boost/graph/iteration_macros.hpp>
#endif
namespace boost
{
namespace detail
{
template < typename Graph1, typename Graph2, typename IsoMapping,
typename Invariant1, typename Invariant2, typename IndexMap1,
typename IndexMap2, typename InvariantCountMap = boost::unordered_flat_map<typename Invariant1::result_type, typename graph_traits< Graph1 >::vertices_size_type > >
class isomorphism_algo
{
typedef typename graph_traits< Graph1 >::vertex_descriptor vertex1_t;
typedef typename graph_traits< Graph2 >::vertex_descriptor vertex2_t;
typedef typename graph_traits< Graph1 >::edge_descriptor edge1_t;
typedef typename graph_traits< Graph1 >::vertices_size_type size_type;
typedef typename Invariant1::result_type invariant_t;
const Graph1& G1;
const Graph2& G2;
IsoMapping f;
Invariant1 invariant1;
Invariant2 invariant2;
IndexMap1 index_map1;
IndexMap2 index_map2;
std::vector< vertex1_t > dfs_vertices;
typedef typename std::vector< vertex1_t >::iterator vertex_iter;
std::vector< int > dfs_num_vec;
typedef safe_iterator_property_map<
typename std::vector< int >::iterator, IndexMap1
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
,
int, int&
#endif /* BOOST_NO_STD_ITERATOR_TRAITS */
>
DFSNumMap;
DFSNumMap dfs_num;
std::vector< edge1_t > ordered_edges;
typedef typename std::vector< edge1_t >::iterator edge_iter;
std::vector< char > in_S_vec;
typedef safe_iterator_property_map<
typename std::vector< char >::iterator, IndexMap2
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
,
char, char&
#endif /* BOOST_NO_STD_ITERATOR_TRAITS */
>
InSMap;
InSMap in_S;
int num_edges_on_k;
friend struct compare_multiplicity;
struct compare_multiplicity
{
compare_multiplicity(Invariant1 invariant1, const InvariantCountMap& multiplicity)
: invariant1(invariant1), multiplicity(&multiplicity)
{
}
bool operator()(const vertex1_t& x, const vertex1_t& y) const
{
auto x_multiplicity_iter = multiplicity->find(invariant1(x));
assert(x_multiplicity_iter != multiplicity->end());
auto y_multiplicity_iter = multiplicity->find(invariant1(y));
assert(y_multiplicity_iter != multiplicity->end());
return *x_multiplicity_iter < *y_multiplicity_iter;
}
Invariant1 invariant1;
const InvariantCountMap* multiplicity;
};
struct record_dfs_order : default_dfs_visitor
{
record_dfs_order(
std::vector< vertex1_t >& v, std::vector< edge1_t >& e)
: vertices(v), edges(e)
{
}
void discover_vertex(vertex1_t v, const Graph1&) const
{
vertices.push_back(v);
}
void examine_edge(edge1_t e, const Graph1&) const
{
edges.push_back(e);
}
std::vector< vertex1_t >& vertices;
std::vector< edge1_t >& edges;
};
struct edge_cmp
{
edge_cmp(const Graph1& G1, DFSNumMap dfs_num)
: G1(G1), dfs_num(dfs_num)
{
}
bool operator()(const edge1_t& e1, const edge1_t& e2) const
{
using namespace std;
int u1 = dfs_num[source(e1, G1)], v1 = dfs_num[target(e1, G1)];
int u2 = dfs_num[source(e2, G1)], v2 = dfs_num[target(e2, G1)];
int m1 = (max)(u1, v1);
int m2 = (max)(u2, v2);
// lexicographical comparison
return std::make_pair(m1, std::make_pair(u1, v1))
< std::make_pair(m2, std::make_pair(u2, v2));
}
const Graph1& G1;
DFSNumMap dfs_num;
};
public:
isomorphism_algo(const Graph1& G1, const Graph2& G2, IsoMapping f,
Invariant1 invariant1, Invariant2 invariant2,
std::size_t /* max_invariant */, IndexMap1 index_map1,
IndexMap2 index_map2)
: G1(G1)
, G2(G2)
, f(f)
, invariant1(invariant1)
, invariant2(invariant2)
, index_map1(index_map1)
, index_map2(index_map2)
{
in_S_vec.resize(num_vertices(G1));
in_S = make_safe_iterator_property_map(
in_S_vec.begin(), in_S_vec.size(), index_map2
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
,
in_S_vec.front()
#endif /* BOOST_NO_STD_ITERATOR_TRAITS */
);
}
// Generates map of invariant multiplicity from sorted invariants
template<typename ForwardIterator>
InvariantCountMap multiplicities(ForwardIterator first, const ForwardIterator last)
{
typedef typename InvariantCountMap::iterator invar_map_iter;
assert(std::is_sorted(first, last));
InvariantCountMap invar_multiplicity;
if(first == last)
return invar_multiplicity;
invariant_t invar = *first;
invar_map_iter inserted = invar_multiplicity.emplace(invar, 1).first;
++first;
for(; first != last; ++first)
{
if(*first == invar)
{
inserted->second += 1;
}
else
{
invar = *first;
inserted = invar_multiplicity.emplace(invar, 1).first;
}
}
return invar_multiplicity;
}
bool test_isomorphism()
{
// reset isomapping
BGL_FORALL_VERTICES_T(v, G1, Graph1)
f[v] = graph_traits< Graph2 >::null_vertex();
// Calculate all invariants of G1 and G2, sort and compare
std::vector< invariant_t > invar1_array;
invar1_array.reserve(num_vertices(G1));
BGL_FORALL_VERTICES_T(v, G1, Graph1)
invar1_array.push_back(invariant1(v));
sort(invar1_array);
std::vector< invariant_t > invar2_array;
invar2_array.reserve(num_vertices(G2));
BGL_FORALL_VERTICES_T(v, G2, Graph2)
invar2_array.push_back(invariant2(v));
sort(invar2_array);
if (!equal(invar1_array, invar2_array))
return false;
// Sort vertices by the multiplicity of their invariants
std::vector< vertex1_t > V_mult;
BGL_FORALL_VERTICES_T(v, G1, Graph1)
V_mult.push_back(v);
sort(V_mult, compare_multiplicity(invariant1, multiplicities(invar1_array.begin(), invar1_array.end())));
std::vector< default_color_type > color_vec(num_vertices(G1));
safe_iterator_property_map<
std::vector< default_color_type >::iterator, IndexMap1
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
,
default_color_type, default_color_type&
#endif /* BOOST_NO_STD_ITERATOR_TRAITS */
>
color_map(color_vec.begin(), color_vec.size(), index_map1);
record_dfs_order dfs_visitor(dfs_vertices, ordered_edges);
typedef color_traits< default_color_type > Color;
for (vertex_iter u = V_mult.begin(); u != V_mult.end(); ++u)
{
if (color_map[*u] == Color::white())
{
dfs_visitor.start_vertex(*u, G1);
depth_first_visit(G1, *u, dfs_visitor, color_map);
}
}
// Create the dfs_num array and dfs_num_map
dfs_num_vec.resize(num_vertices(G1));
dfs_num = make_safe_iterator_property_map(
dfs_num_vec.begin(), dfs_num_vec.size(), index_map1
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
,
dfs_num_vec.front()
#endif /* BOOST_NO_STD_ITERATOR_TRAITS */
);
size_type n = 0;
for (vertex_iter v = dfs_vertices.begin(); v != dfs_vertices.end();
++v)
dfs_num[*v] = n++;
sort(ordered_edges, edge_cmp(G1, dfs_num));
int dfs_num_k = -1;
return this->match(ordered_edges.begin(), dfs_num_k);
}
private:
struct match_continuation
{
enum
{
pos_G2_vertex_loop,
pos_fi_adj_loop,
pos_dfs_num
} position;
typedef typename graph_traits< Graph2 >::vertex_iterator
vertex_iterator;
std::pair< vertex_iterator, vertex_iterator > G2_verts;
typedef typename graph_traits< Graph2 >::adjacency_iterator
adjacency_iterator;
std::pair< adjacency_iterator, adjacency_iterator > fi_adj;
edge_iter iter;
int dfs_num_k;
};
bool match(edge_iter iter, int dfs_num_k)
{
std::vector< match_continuation > k;
typedef typename graph_traits< Graph2 >::vertex_iterator
vertex_iterator;
std::pair< vertex_iterator, vertex_iterator > G2_verts(
vertices(G2));
typedef typename graph_traits< Graph2 >::adjacency_iterator
adjacency_iterator;
std::pair< adjacency_iterator, adjacency_iterator > fi_adj;
vertex1_t i, j;
recur:
if (iter != ordered_edges.end())
{
i = source(*iter, G1);
j = target(*iter, G1);
if (dfs_num[i] > dfs_num_k)
{
G2_verts = vertices(G2);
while (G2_verts.first != G2_verts.second)
{
{
vertex2_t u = *G2_verts.first;
vertex1_t kp1 = dfs_vertices[dfs_num_k + 1];
if (invariant1(kp1) == invariant2(u)
&& in_S[u] == false)
{
{
f[kp1] = u;
in_S[u] = true;
num_edges_on_k = 0;
match_continuation new_k;
new_k.position = match_continuation::
pos_G2_vertex_loop;
new_k.G2_verts = G2_verts;
new_k.iter = iter;
new_k.dfs_num_k = dfs_num_k;
k.push_back(new_k);
++dfs_num_k;
goto recur;
}
}
}
G2_loop_k:
++G2_verts.first;
}
}
else if (dfs_num[j] > dfs_num_k)
{
{
vertex1_t vk = dfs_vertices[dfs_num_k];
num_edges_on_k -= count_if(adjacent_vertices(f[vk], G2),
make_indirect_pmap(in_S));
for (int jj = 0; jj < dfs_num_k; ++jj)
{
vertex1_t j = dfs_vertices[jj];
num_edges_on_k
-= count(adjacent_vertices(f[j], G2), f[vk]);
}
}
if (num_edges_on_k != 0)
goto return_point_false;
fi_adj = adjacent_vertices(f[i], G2);
while (fi_adj.first != fi_adj.second)
{
{
vertex2_t v = *fi_adj.first;
if (invariant2(v) == invariant1(j)
&& in_S[v] == false)
{
f[j] = v;
in_S[v] = true;
num_edges_on_k = 1;
BOOST_USING_STD_MAX();
int next_k
= max BOOST_PREVENT_MACRO_SUBSTITUTION(
dfs_num_k,
max BOOST_PREVENT_MACRO_SUBSTITUTION(
dfs_num[i], dfs_num[j]));
match_continuation new_k;
new_k.position
= match_continuation::pos_fi_adj_loop;
new_k.fi_adj = fi_adj;
new_k.iter = iter;
new_k.dfs_num_k = dfs_num_k;
++iter;
dfs_num_k = next_k;
k.push_back(new_k);
goto recur;
}
}
fi_adj_loop_k:
++fi_adj.first;
}
}
else
{
if (container_contains(adjacent_vertices(f[i], G2), f[j]))
{
++num_edges_on_k;
match_continuation new_k;
new_k.position = match_continuation::pos_dfs_num;
k.push_back(new_k);
++iter;
goto recur;
}
}
}
else
goto return_point_true;
goto return_point_false;
{
return_point_true:
// At this point, there may still be null vertices in the
// mapping for disconnected vertices
map_disconnected_vertices();
return true;
return_point_false:
if (k.empty())
return false;
const match_continuation& this_k = k.back();
switch (this_k.position)
{
case match_continuation::pos_G2_vertex_loop:
{
G2_verts = this_k.G2_verts;
iter = this_k.iter;
dfs_num_k = this_k.dfs_num_k;
k.pop_back();
in_S[*G2_verts.first] = false;
i = source(*iter, G1);
j = target(*iter, G1);
goto G2_loop_k;
}
case match_continuation::pos_fi_adj_loop:
{
fi_adj = this_k.fi_adj;
iter = this_k.iter;
dfs_num_k = this_k.dfs_num_k;
k.pop_back();
in_S[*fi_adj.first] = false;
i = source(*iter, G1);
j = target(*iter, G1);
goto fi_adj_loop_k;
}
case match_continuation::pos_dfs_num:
{
k.pop_back();
goto return_point_false;
}
default:
{
BOOST_ASSERT(!"Bad position");
#ifdef UNDER_CE
exit(-1);
#else
abort();
#endif
}
}
}
}
void map_disconnected_vertices()
{
std::vector< vertex1_t > unmatched_g1_vertices;
BGL_FORALL_VERTICES_T(v, G1, Graph1)
{
if(f[v] == graph_traits< Graph2 >::null_vertex()) {
unmatched_g1_vertices.push_back(v);
}
}
if(!unmatched_g1_vertices.empty())
{
typedef unordered_multimap< invariant_t, vertex2_t > g2_invariant_vertex_multimap;
typedef typename g2_invariant_vertex_multimap::iterator multimap_iter;
g2_invariant_vertex_multimap unmatched_invariants;
BGL_FORALL_VERTICES_T(v, G2, Graph2)
{
if(!in_S[v])
{
unmatched_invariants.emplace(invariant2(v), v);
}
}
typedef typename std::vector< vertex1_t >::iterator v1_iter;
const v1_iter end = unmatched_g1_vertices.end();
for(v1_iter iter = unmatched_g1_vertices.begin(); iter != end; ++iter)
{
invariant_t unmatched_g1_vertex_invariant = invariant1(*iter);
multimap_iter matching_invariant = unmatched_invariants.find(unmatched_g1_vertex_invariant);
BOOST_ASSERT(matching_invariant != unmatched_invariants.end());
f[*iter] = matching_invariant->second;
unmatched_invariants.erase(matching_invariant);
}
}
}
};
template < typename Graph, typename InDegreeMap >
void compute_in_degree(const Graph& g, InDegreeMap in_degree_map)
{
BGL_FORALL_VERTICES_T(v, g, Graph)
put(in_degree_map, v, 0);
BGL_FORALL_VERTICES_T(u, g, Graph)
BGL_FORALL_ADJ_T(u, v, g, Graph)
put(in_degree_map, v, get(in_degree_map, v) + 1);
}
} // namespace detail
template < typename InDegreeMap, typename Graph > class degree_vertex_invariant
{
typedef typename graph_traits< Graph >::vertex_descriptor vertex_t;
typedef typename graph_traits< Graph >::degree_size_type size_type;
public:
typedef vertex_t argument_type;
typedef size_type result_type;
degree_vertex_invariant(const InDegreeMap& in_degree_map, const Graph& g)
: m_in_degree_map(in_degree_map)
, m_max_vertex_in_degree(0)
, m_max_vertex_out_degree(0)
, m_g(g)
{
BGL_FORALL_VERTICES_T(v, g, Graph)
{
m_max_vertex_in_degree
= (std::max)(m_max_vertex_in_degree, get(m_in_degree_map, v));
m_max_vertex_out_degree
= (std::max)(m_max_vertex_out_degree, out_degree(v, g));
}
}
size_type operator()(vertex_t v) const
{
return (m_max_vertex_in_degree + 1) * out_degree(v, m_g)
+ get(m_in_degree_map, v);
}
// The largest possible vertex invariant number
size_type max BOOST_PREVENT_MACRO_SUBSTITUTION() const
{
return (m_max_vertex_in_degree + 1) * (m_max_vertex_out_degree + 1);
}
private:
InDegreeMap m_in_degree_map;
size_type m_max_vertex_in_degree;
size_type m_max_vertex_out_degree;
const Graph& m_g;
};
// Count actual number of vertices, even in filtered graphs.
template < typename Graph > size_t count_vertices(const Graph& g)
{
size_t n = 0;
BGL_FORALL_VERTICES_T(v, g, Graph)
{
(void)v;
++n;
}
return n;
}
template < typename Graph1, typename Graph2, typename IsoMapping,
typename Invariant1, typename Invariant2, typename IndexMap1,
typename IndexMap2 >
bool isomorphism(const Graph1& G1, const Graph2& G2, IsoMapping f,
Invariant1 invariant1, Invariant2 invariant2, std::size_t /* max_invariant */,
IndexMap1 index_map1, IndexMap2 index_map2)
{
// Graph requirements
BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph1 >));
BOOST_CONCEPT_ASSERT((EdgeListGraphConcept< Graph1 >));
BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph2 >));
// BOOST_CONCEPT_ASSERT(( BidirectionalGraphConcept<Graph2> ));
typedef typename graph_traits< Graph1 >::vertex_descriptor vertex1_t;
typedef typename graph_traits< Graph2 >::vertex_descriptor vertex2_t;
typedef typename graph_traits< Graph1 >::vertices_size_type size_type;
typedef typename Invariant1::result_type invariant1_t;
typedef typename Invariant2::result_type invariant2_t;
BOOST_STATIC_ASSERT(is_same<invariant1_t, invariant2_t>::value);
// Vertex invariant requirement
BOOST_CONCEPT_ASSERT(
(AdaptableUnaryFunctionConcept< Invariant1, invariant1_t, vertex1_t >));
BOOST_CONCEPT_ASSERT(
(AdaptableUnaryFunctionConcept< Invariant2, invariant2_t, vertex2_t >));
// Property map requirements
BOOST_CONCEPT_ASSERT(
(ReadWritePropertyMapConcept< IsoMapping, vertex1_t >));
typedef typename property_traits< IsoMapping >::value_type IsoMappingValue;
BOOST_STATIC_ASSERT((is_convertible< IsoMappingValue, vertex2_t >::value));
BOOST_CONCEPT_ASSERT((ReadablePropertyMapConcept< IndexMap1, vertex1_t >));
typedef typename property_traits< IndexMap1 >::value_type IndexMap1Value;
BOOST_STATIC_ASSERT((is_convertible< IndexMap1Value, size_type >::value));
BOOST_CONCEPT_ASSERT((ReadablePropertyMapConcept< IndexMap2, vertex2_t >));
typedef typename property_traits< IndexMap2 >::value_type IndexMap2Value;
BOOST_STATIC_ASSERT((is_convertible< IndexMap2Value, size_type >::value));
if (count_vertices(G1) != count_vertices(G2))
return false;
if (count_vertices(G1) == 0 && count_vertices(G2) == 0)
return true;
detail::isomorphism_algo< Graph1, Graph2, IsoMapping, Invariant1,
Invariant2, IndexMap1, IndexMap2 >
algo(G1, G2, f, invariant1, invariant2, 0, index_map1,
index_map2);
return algo.test_isomorphism();
}
namespace detail
{
template < typename Graph1, typename Graph2, typename IsoMapping,
typename IndexMap1, typename IndexMap2, typename P, typename T,
typename R >
bool isomorphism_impl(const Graph1& G1, const Graph2& G2, IsoMapping f,
IndexMap1 index_map1, IndexMap2 index_map2,
const bgl_named_params< P, T, R >& params)
{
std::vector< std::size_t > in_degree1_vec(num_vertices(G1));
typedef safe_iterator_property_map<
std::vector< std::size_t >::iterator, IndexMap1
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
,
std::size_t, std::size_t&
#endif /* BOOST_NO_STD_ITERATOR_TRAITS */
>
InDeg1;
InDeg1 in_degree1(
in_degree1_vec.begin(), in_degree1_vec.size(), index_map1);
compute_in_degree(G1, in_degree1);
std::vector< std::size_t > in_degree2_vec(num_vertices(G2));
typedef safe_iterator_property_map<
std::vector< std::size_t >::iterator, IndexMap2
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
,
std::size_t, std::size_t&
#endif /* BOOST_NO_STD_ITERATOR_TRAITS */
>
InDeg2;
InDeg2 in_degree2(
in_degree2_vec.begin(), in_degree2_vec.size(), index_map2);
compute_in_degree(G2, in_degree2);
degree_vertex_invariant< InDeg1, Graph1 > invariant1(in_degree1, G1);
degree_vertex_invariant< InDeg2, Graph2 > invariant2(in_degree2, G2);
return isomorphism(G1, G2, f,
choose_param(get_param(params, vertex_invariant1_t()), invariant1),
choose_param(get_param(params, vertex_invariant2_t()), invariant2),
0,
index_map1, index_map2);
}
template < typename G, typename Index > struct make_degree_invariant
{
const G& g;
const Index& index;
make_degree_invariant(const G& g, const Index& index)
: g(g), index(index)
{
}
typedef typename boost::graph_traits< G >::degree_size_type
degree_size_type;
typedef shared_array_property_map< degree_size_type, Index >
prop_map_type;
typedef degree_vertex_invariant< prop_map_type, G > result_type;
result_type operator()() const
{
prop_map_type pm = make_shared_array_property_map(
num_vertices(g), degree_size_type(), index);
compute_in_degree(g, pm);
return result_type(pm, g);
}
};
} // namespace detail
namespace graph
{
namespace detail
{
template < typename Graph1, typename Graph2 > struct isomorphism_impl
{
typedef bool result_type;
typedef result_type type;
template < typename ArgPack >
bool operator()(const Graph1& g1, const Graph2& g2,
const ArgPack& arg_pack) const
{
using namespace boost::graph::keywords;
typedef typename boost::detail::override_const_property_result<
ArgPack, tag::vertex_index1_map, boost::vertex_index_t,
Graph1 >::type index1_map_type;
typedef typename boost::detail::override_const_property_result<
ArgPack, tag::vertex_index2_map, boost::vertex_index_t,
Graph2 >::type index2_map_type;
index1_map_type index1_map
= boost::detail::override_const_property(
arg_pack, _vertex_index1_map, g1, boost::vertex_index);
index2_map_type index2_map
= boost::detail::override_const_property(
arg_pack, _vertex_index2_map, g2, boost::vertex_index);
typedef typename graph_traits< Graph2 >::vertex_descriptor
vertex2_t;
typename std::vector< vertex2_t >::size_type n
= (typename std::vector< vertex2_t >::size_type)
num_vertices(g1);
std::vector< vertex2_t > f(n);
typename boost::parameter::lazy_binding< ArgPack,
tag::vertex_invariant1,
boost::detail::make_degree_invariant< Graph1,
index1_map_type > >::type invariant1
= arg_pack[_vertex_invariant1
|| boost::detail::make_degree_invariant< Graph1,
index1_map_type >(g1, index1_map)];
typename boost::parameter::lazy_binding< ArgPack,
tag::vertex_invariant2,
boost::detail::make_degree_invariant< Graph2,
index2_map_type > >::type invariant2
= arg_pack[_vertex_invariant2
|| boost::detail::make_degree_invariant< Graph2,
index2_map_type >(g2, index2_map)];
return boost::isomorphism(g1, g2,
choose_param(
arg_pack[_isomorphism_map | boost::param_not_found()],
make_shared_array_property_map(
num_vertices(g1), vertex2_t(), index1_map)),
invariant1, invariant2,
0,
index1_map, index2_map);
}
};
}
BOOST_GRAPH_MAKE_FORWARDING_FUNCTION(isomorphism, 2, 6)
}
// Named parameter interface
BOOST_GRAPH_MAKE_OLD_STYLE_PARAMETER_FUNCTION(isomorphism, 2)
// Verify that the given mapping iso_map from the vertices of g1 to the
// vertices of g2 describes an isomorphism.
// Note: this could be made much faster by specializing based on the graph
// concepts modeled, but since we're verifying an O(n^(lg n)) algorithm,
// O(n^4) won't hurt us.
template < typename Graph1, typename Graph2, typename IsoMap >
inline bool verify_isomorphism(
const Graph1& g1, const Graph2& g2, IsoMap iso_map)
{
#if 0
// problematic for filtered_graph!
if (num_vertices(g1) != num_vertices(g2) || num_edges(g1) != num_edges(g2))
return false;
#endif
BGL_FORALL_EDGES_T(e1, g1, Graph1)
{
bool found_edge = false;
BGL_FORALL_EDGES_T(e2, g2, Graph2)
{
if (source(e2, g2) == get(iso_map, source(e1, g1))
&& target(e2, g2) == get(iso_map, target(e1, g1)))
{
found_edge = true;
}
}
if (!found_edge)
return false;
}
return true;
}
} // namespace boost
#ifdef BOOST_ISO_INCLUDED_ITER_MACROS
#undef BOOST_ISO_INCLUDED_ITER_MACROS
#include <boost/graph/iteration_macros_undef.hpp>
#endif
#endif // BOOST_GRAPH_ISOMORPHISM_HPP